145 research outputs found

    Ultrafast all-optical switching by single photons

    Full text link
    An outstanding goal in quantum optics is the realization of fast optical non-linearities at the single-photon level. Such non-linearities would allow for the realization of optical devices with new functionalities such as a single-photon switch/transistor or a controlled-phase gate, which could form the basis of future quantum optical technologies. While non-linear optics effects at the single-emitter level have been demonstrated in different systems, including atoms coupled to Fabry-Perot or toroidal micro-cavities, super-conducting qubits in strip-line resonators or quantum dots (QDs) in nano-cavities, none of these experiments so far has demonstrated single-photon switching on ultrafast timescales. Here, we demonstrate that in a strongly coupled QD-cavity system the presence of a single photon on one of the fundamental polariton transitions can turn on light scattering on a transition from the first to the second Jaynes-Cummings manifold with a switching time of 20 ps. As an additional device application, we use this non-linearity to implement a single-photon pulse-correlator. Our QD-cavity system could form the building-block of future high-bandwidth photonic networks operating in the quantum regime

    Relative Roles of the Cellular and Humoral Responses in the Drosophila Host Defense against Three Gram-Positive Bacterial Infections

    Get PDF
    BACKGROUND: Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense. METHODOLOGY/PRINCIPAL FINDINGS: In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus), we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response. CONCLUSIONS/SIGNIFICANCE: Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen

    Brain Activation Patterns Characterizing Different Phases of Motor Action: Execution, Choice and Ideation.

    Get PDF
    Motor behaviour is controlled by a large set of interacting neural structures, subserving the different components involved in hierarchical motor processes. Few studies have investigated the neural substrate of higher-order motor ideation, i.e. the mental operation of conceiving a movement. The aim of this functional magnetic resonance imaging study was to segregate the neural structures involved in motor ideation from those involved in movement choice and execution. An index finger movement paradigm was adopted, including three different conditions: performing a pre-specified movement, choosing and executing a movement and ideating a movement of choice. The tasks involved either the right or left hand, in separate runs. Neuroimaging results were obtained by comparing the different experimental conditions and computing conjunction maps of the right and left hands for each contrast. Pre-specified movement execution was supported by bilateral fronto-parietal motor regions, the cerebellum and putamen. Choosing and executing finger movement involved mainly left fronto-temporal areas and the anterior cingulate. Motor ideation activated almost exclusively left hemisphere regions, including the inferior, middle and superior frontal regions, middle temporal and middle occipital gyri. These findings show that motor ideation is controlled by a cortical network mainly involved in abstract thinking, cognitive and motor control, semantic and visual imagery processes

    The Toll→NFκB Signaling Pathway Mediates the Neuropathological Effects of the Human Alzheimer's Aβ42 Polypeptide in Drosophila

    Get PDF
    Alzheimer's (AD) is a progressive neurodegenerative disease that afflicts a significant fraction of older individuals. Although a proteolytic product of the Amyloid precursor protein, the Αβ42 polypeptide, has been directly implicated in the disease, the genes and biological pathways that are deployed during the process of Αβ42 induced neurodegeneration are not well understood and remain controversial. To identify genes and pathways that mediated Αβ42 induced neurodegeneration we took advantage of a Drosophila model for AD disease in which ectopically expressed human Αβ42 polypeptide induces cell death and tissue degeneration in the compound eye. One of the genes identified in our genetic screen is Toll (Tl). It encodes the receptor for the highly conserved Tl→NFkB innate immunity/inflammatory pathway and is a fly homolog of the mammalian Interleukin-1 (Ilk-1) receptor. We found that Tl loss-of-function mutations dominantly suppress the neuropathological effects of the Αβ42 polypeptide while gain-of-function mutations that increase receptor activity dominantly enhance them. Furthermore, we present evidence demonstrating that Tl and key downstream components of the innate immunity/inflammatory pathway play a central role in mediating the neuropathological activities of Αβ42. We show that the deleterious effects of Αβ42 can be suppressed by genetic manipulations of the Tl→NFkB pathway that downregulate signal transduction. Conversely, manipulations that upregulate signal transduction exacerbate the deleterious effects of Aβ42. Since postmortem studies have shown that the Ilk-1→NFkB innate immunity pathway is substantially upregulated in the brains of AD patients, the demonstration that the Tl→NFkB signaling actively promotes the process of Αβ42 induced cell death and tissue degeneration in flies points to possible therapeutic targets and strategies

    A shared role for RBF1 and dCAP-D3 in the regulation of transcription with consequences for innate immunity

    Get PDF
    Previously, we discovered a conserved interaction between RB proteins and the Condensin II protein CAP-D3 that is important for ensuring uniform chromatin condensation during mitotic prophase. The Drosophila melanogaster homologs RBF1 and dCAP-D3 co-localize on non-dividing polytene chromatin, suggesting the existence of a shared, non-mitotic role for these two proteins. Here, we show that the absence of RBF1 and dCAP-D3 alters the expression of many of the same genes in larvae and adult flies. Strikingly, most of the genes affected by the loss of RBF1 and dCAP-D3 are not classic cell cycle genes but are developmentally regulated genes with tissue-specific functions and these genes tend to be located in gene clusters. Our data reveal that RBF1 and dCAP-D3 are needed in fat body cells to activate transcription of clusters of antimicrobial peptide (AMP) genes. AMPs are important for innate immunity, and loss of either dCAP-D3 or RBF1 regulation results in a decrease in the ability to clear bacteria. Interestingly, in the adult fat body, RBF1 and dCAP-D3 bind to regions flanking an AMP gene cluster both prior to and following bacterial infection. These results describe a novel, non-mitotic role for the RBF1 and dCAP-D3 proteins in activation of the Drosophila immune system and suggest dCAP-D3 has an important role at specific subsets of RBF1-dependent genes

    Drosophila melanogaster as an Animal Model for the Study of Pseudomonas aeruginosa Biofilm Infections In Vivo

    Get PDF
    Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3) demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo

    The Drosophila melanogaster host model

    Get PDF
    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed
    corecore