8 research outputs found

    Secular Evolution and the Growth of Pseudobulges in Disk Galaxies

    Full text link
    Galaxy evolution is in transition from an early universe dominated by hierarchical clustering to a future dominated by secular processes. These result from interactions involving collective phenomena such as bars, oval disks, spiral structure, and triaxial dark halos. This paper summarizes a review by Kormendy & Kennicutt (2004) using, in part, illustrations of different galaxies. In simulations, bars rearrange disk gas into outer rings, inner rings, and galactic centers, where high gas densities feed starbursts. Consistent with this picture, many barred and oval galaxies have dense central concentrations of gas and star formation rates that can build bulge-like stellar densities on timescales of a few billion years. We conclude that secular evolution builds dense central components in disk galaxies that look like classical, merger-built bulges but that were made slowly out of disk gas. We call these pseudobulges. Many pseudobulges can be recognized because they have characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions, (4) spiral structure or nuclear bars, (5) nearly exponential brightness profiles, and (6) starbursts. These structures occur preferentially in barred and oval galaxies in which secular evolution should be most rapid. Thus a variety of observational and theoretical results contribute to a new paradigm of secular evolution that complements hierarchical clustering.Comment: 19 pages, 9 Postscript figures; requires kapproc.cls and procps.sty; to appear in "Penetrating Bars Through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note", ed. Block, Freeman, Puerari, Groess, and Block, Dordrecht: Kluwer, in press; for a version with full resolution figures, see http://chandra.as.utexas.edu/~kormendy/ar3ss.htm

    Thome, John Macon

    No full text

    Gould, Benjamin Apthorp

    No full text

    Perrine, Charles Dillon

    No full text

    Nearly 100% of the sky is covered by Lyman-α emission around high redshift galaxies

    No full text
    International audienceGalaxies are surrounded by large reservoirs of gas, mostly hydrogen, fed by inflows from the intergalactic medium and by outflows due to galactic winds. Absorption-line measurements along the sightlines to bright and rare background quasars indicate that this circumgalac-tic medium pervades far beyond the extent of starlight in galaxies, but very little is known about the spatial distribution of this gas. A new window into circumgalactic environments was recently opened with the discovery of ubiquitous extended Lyman-α emission from hydrogen around high-redshift galaxies[1, 2], facilitated by the extraordinary sensitivity of the MUSE instrument at the ESO Very Large Telescope[3]. Due to the faintness of this emission, such measurements were previously limited to especially favourable systems[4-6] or to massive statistical averaging[7, 8]. Here we demonstrate that low surface brightness Lyman-α emission surrounding faint galaxies at redshifts between 3 and 6 adds up to a projected sky coverage of nearly 100%. The corresponding rate of incidence (the mean number of Lyman-α emitters penetrated by any arbitrary line of sight) is well above unity and similar to the incidence rate of high column density absorbers frequently detected in the spectra of distant quasars[9-12]. This similarity suggests that most circumgalactic atomic hydrogen at these redshifts has now been detected also in emission

    AGN Feedback in Elliptical Galaxies: Numerical Simulations

    No full text
    The importance of feedback (radiative and mechanical) from massive black holes at the centers of elliptical galaxies is not in doubt, given the well established relation among black hole mass and galaxy optical luminosity. Here, with the aid of high-resolution hydrodynamical simulations, we discuss how this feedback affects the hot ISM of isolated elliptical galaxies of different mass. The cooling and heating functions include photoionization plus Compton heating, the radiative transport equations are solved, and the mechanical feedback due to the nuclear wind is also described on a physical basis; star formation is considered. In the medium-high mass galaxies the resulting evolution is highly unsteady. At early times major accretion episodes caused by cooling flows in the recycled gas produced by stellar evolution trigger AGN flaring: relaxation instabilities occur so that duty cycles are small enough to account for the very small fraction of massive ellipticals observed to be in the QSO-phase, when the accretion luminosity approaches the Eddington luminosity. At low redshift all models are characterized by smooth, very sub-Eddington mass accretion rates. The mass accumulated by the central black hole is limited to range observed today, even though the mass lost by the evolving stellar population is roughly two order of magnitude larger than the black hole masses observed in elliptical galaxies.Comment: 20 pages, 4 (low-resolution) figures. Abbreviated version of the article to appear in book "Hot Interstellar Matter in Elliptical Galaxies", D.-W. Kim and S. Pellegrini eds., Astrophysics and Space Science Library (ASSL), Springe

    Radio AGN in the local universe: unification, triggering and evolution

    No full text
    corecore