546 research outputs found

    Regulation of Thromboxane Receptor Signaling at Multiple Levels by Oxidative Stress-Induced Stabilization, Relocation and Enhanced Responsiveness

    Get PDF
    Thromboxane A(2) (TxA(2)) is a major, unstable arachidonic acid metabolite, and plays a key role in normal physiology and control of vascular tone. The human thromboxane receptor (TPβ), expressed in COS-7 cells, is located predominantly in the endoplasmic reticulum (ER). Brief hydrogen peroxide exposure increases the efficiency of translocation of TPβ from the ER into the Golgi complex, inducing maturation and stabilization of TPβ. However, the ultimate fate of this post-ER TPβ pool is not known, nor is its capacity to initiate signal transduction. Here we specifically assessed if functional TPβ was transported to the plasma membrane following H(2)O(2) exposure.We demonstrate, by biotinylation and confocal microscopy, that exposure to H(2)O(2) results in rapid delivery of a cohort of TPβ to the cell surface, which is stable for at least eight hours. Surface delivery is brefeldin A-sensitive, indicating that translocation of this receptor cohort is from internal pools and via the Golgi complex. H(2)O(2) treatment results in potentiation of the increase to intracellular calcium concentrations in response to TPβ agonists U46619 and 8-iso PGF(2α) and also in the loss of ligand-dependent receptor internalization. Further there is increased responsiveness to a second application of the agonist. Finally we demonstrate that the effect of H(2)O(2) on stimulating surface delivery is shared with the FP prostanoid receptor but not the EP3 or EP4 receptors.In summary, brief exposure to H(2)O(2) results in an immediate and sustained increase in the surface pool of thromboxane receptor that is capable of mediating a persistent hyper-responsiveness of the cell and suggests a highly sophisticated mechanism for rapidly regulating thromboxane signaling

    Mechanical Work as an Indirect Measure of Subjective Costs Influencing Human Movement

    Get PDF
    To descend a flight of stairs, would you rather walk or fall? Falling seems to have some obvious disadvantages such as the risk of pain or injury. But the preferred strategy of walking also entails a cost for the use of active muscles to perform negative work. The amount and distribution of work a person chooses to perform may, therefore, reflect a subjective valuation of the trade-offs between active muscle effort and other costs, such as pain. Here we use a simple jump landing experiment to quantify the work humans prefer to perform to dissipate the energy of landing. We found that healthy normal subjects (N = 8) preferred a strategy that involved performing 37% more negative work than minimally necessary (P<0.001) across a range of landing heights. This then required additional positive work to return to standing rest posture, highlighting the cost of this preference. Subjects were also able to modulate the amount of landing work, and its distribution between active and passive tissues. When instructed to land softly, they performed 76% more work than necessary (P<0.001), with a higher proportion from active muscles (89% vs. 84%, P<0.001). Stiff-legged landings, performed by one subject for demonstration, exhibited close to the minimum of work, with more of it performed passively through soft tissue deformations (at least 30% in stiff landings vs. 16% preferred). During jump landings, humans appear not to minimize muscle work, but instead choose to perform a consistent amount of extra work, presumably to avoid other subjective costs. The degree to which work is not minimized may indirectly quantify the relative valuation of costs that are otherwise difficult to measure

    Rapid Analysis of Saccharomyces cerevisiae Genome Rearrangements by Multiplex Ligation–Dependent Probe Amplification

    Get PDF
    Aneuploidy and gross chromosomal rearrangements (GCRs) can lead to genetic diseases and the development of cancer. We previously demonstrated that introduction of the repetitive retrotransposon Ty912 onto a nonessential chromosome arm of Saccharomyces cerevisiae led to increased genome instability predominantly due to increased rates of formation of monocentric nonreciprocal translocations. In this study, we adapted Multiplex Ligation–dependent Probe Amplification (MLPA) to analyze a large numbers of these GCRs. Using MLPA, we found that the distribution of translocations induced by the presence of Ty912 in a wild-type strain was nonrandom and that the majority of these translocations were mediated by only six translocation targets on four different chromosomes, even though there were 254 potential Ty-related translocation targets in the S. cerevisiae genome. While the majority of Ty912-mediated translocations resulted from RAD52-dependent recombination, we observed a number of nonreciprocal translocations mediated by RAD52-independent recombination between Ty1 elements. The formation of these RAD52-independent translocations did not require the Rad51 or Rad59 homologous pairing proteins or the Rad1–Rad10 endonuclease complex that processes branched DNAs during recombination. Finally, we found that defects in ASF1-RTT109–dependent acetylation of histone H3 lysine residue 56 (H3K56) resulted in increased accumulation of both GCRs and whole-chromosome duplications, and resulted in aneuploidy that tended to occur simultaneously with GCRs. Overall, we found that MLPA is a versatile technique for the rapid analysis of GCRs and can facilitate the genetic analysis of the pathways that prevent and promote GCRs and aneuploidy

    Trypanosoma brucei Modifies the Tsetse Salivary Composition, Altering the Fly Feeding Behavior That Favors Parasite Transmission

    Get PDF
    Tsetse flies are the notorious transmitters of African trypanosomiasis, a disease caused by the Trypanosoma parasite that affects humans and livestock on the African continent. Metacyclic infection rates in natural tsetse populations with Trypanosoma brucei, including the two human-pathogenic subspecies, are very low, even in epidemic situations. Therefore, the infected fly/host contact frequency is a key determinant of the transmission dynamics. As an obligate blood feeder, tsetse flies rely on their complex salivary potion to inhibit host haemostatic reactions ensuring an efficient feeding. The results of this experimental study suggest that the parasite might promote its transmission through manipulation of the tsetse feeding behavior by modifying the saliva composition. Indeed, salivary gland Trypanosoma brucei-infected flies display a significantly prolonged feeding time, thereby enhancing the likelihood of infecting multiple hosts during the process of a single blood meal cycle. Comparison of the two major anti-haemostatic activities i.e. anti-platelet aggregation and anti-coagulation activity in these flies versus non-infected tsetse flies demonstrates a significant suppression of these activities as a result of the trypanosome-infection status. This effect was mainly related to the parasite-induced reduction in salivary gland gene transcription, resulting in a strong decrease in protein content and related biological activities. Additionally, the anti-thrombin activity and inhibition of thrombin-induced coagulation was even more severely hampered as a result of the trypanosome infection. Indeed, while naive tsetse saliva strongly inhibited human thrombin activity and thrombin-induced blood coagulation, saliva from T. brucei-infected flies showed a significantly enhanced thrombinase activity resulting in a far less potent anti-coagulation activity. These data clearly provide evidence for a trypanosome-mediated modification of the tsetse salivary composition that results in a drastically reduced anti-haemostatic potential and a hampered feeding performance which could lead to an increase of the vector/host contact and parasite transmission in field conditions

    Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na+-Channel Scorpion Toxins

    Get PDF
    Background: Colombia and Brazil are affected by severe cases of scorpionism. In Colombia the most dangerous accidents are caused by Tityus pachyurus that is widely distributed around this country. In the Brazilian Amazonian region scorpion stings are a common event caused by Tityus obscurus. The main objective of this work was to perform the molecular cloning of the putative Na+-channel scorpion toxins (NaScTxs) from T. pachyurus and T. obscurus venom glands and to analyze their phylogenetic relationship with other known NaScTxs from Tityus species. Methodology/Principal Findings: cDNA libraries from venom glands of these two species were constructed and five nucleotide sequences from T. pachyurus were identified as putative modulators of Na+-channels, and were named Tpa4, Tpa5, Tpa6, Tpa7 and Tpa8; the latter being the first anti-insect excitatory b-class NaScTx in Tityus scorpion venom to be described. Fifteen sequences from T. obscurus were identified as putative NaScTxs, among which three had been previously described, and the others were named To4 to To15. The peptides Tpa4, Tpa5, Tpa6, To6, To7, To9, To10 and To14 are closely related to the a-class NaScTxs, whereas Tpa7, Tpa8, To4, To8, To12 and To15 sequences are more related to the b-class NaScTxs. To5 is possibly an arthropod specific toxin. To11 and To13 share sequence similarities with both a and b NaScTxs. By means of phylogenetic analysis using the Maximum Parsimony method and the known NaScTxs from Tityus species, these toxins were clustered into 14 distinct groups. Conclusions/Significance: This communication describes new putative NaScTxs from T. pachyurus and T. obscurus and their phylogenetic analysis. The results indicate clear geographic separation between scorpions of Tityus genus inhabiting the Amazonian and Mountain Andes regions and those distributed over the Southern of the Amazonian rainforest. Based on the consensus sequences for the different clusters, a new nomenclature for the NaScTxs is proposed

    Multiple Signals Converge on a Differentiation MAPK Pathway

    Get PDF
    An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target “hub” where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors

    Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse

    Get PDF
    A finished clone-based assembly of the mouse genome reveals extensive recent sequence duplication during recent evolution and rodent-specific expansion of certain gene families. Newly assembled duplications contain protein-coding genes that are mostly involved in reproductive function

    Outcomes research in the development and evaluation of practice guidelines

    Get PDF
    BACKGROUND: Practice guidelines have been developed in response to the observation that variations exist in clinical medicine that are not related to variations in the clinical presentation and severity of the disease. Despite their widespread use, however, practice guideline evaluation lacks a rigorous scientific methodology to support its development and application. DISCUSSION: Firstly, we review the major epidemiological foundations of practice guideline development. Secondly, we propose a chronic disease epidemiological model in which practice patterns are viewed as the exposure and outcomes of interest such as quality or cost are viewed as the disease. Sources of selection, information, confounding and temporal trend bias are identified and discussed. SUMMARY: The proposed methodological framework for outcomes research to evaluate practice guidelines reflects the selection, information and confounding biases inherent in its observational nature which must be accounted for in both the design and the analysis phases of any outcomes research study
    corecore