949 research outputs found

    The role of resuscitation promoting factors in pathogenesis and reactivation of Mycobacterium tuberculosis during intra-peritoneal infection in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis </it>can enter into a dormant state which has resulted in one third of the world's population being infected with latent tuberculosis making the study of latency and reactivation of utmost importance. <it>M. tuberculosis </it>encodes five resuscitation promoting factors (Rpfs) that bear strong similarity to a lysozyme-like enzyme previously implicated in reactivation of dormant bacteria <it>in vitro</it>.</p> <p>We have developed an intraperitoneal infection model in mice, with immune modulation, that models chronic infection with similar properties in mouse lungs as those observed in the murine aerosol infection model. We have assessed the behavior of mutants that lack two or three <it>rpf </it>genes in different combinations in our intraperitoneal model.</p> <p>Methods</p> <p>C57Bl/6 mice were intraperitonealy infected with H37Rv wild type <it>M. tuberculosis </it>or mutant strains that lacked two or three <it>rpf </it>genes in different combinations. After 90 days of infection aminoguanidine (AG) or anti-TNFΞ± antibodies were administrated. Organ bacillary loads were determined at various intervals post infection by plating serial dilutions of organ homogenates and enumerating bacteria.</p> <p>Results</p> <p>We found that the <it>rpf </it>triple and double mutants tested were attenuated in their ability to disseminate to mouse lungs after intraperitoneal administration and were defective in their ability to re-grow after immunosuppression induced by administration of aminoguanidine and anti-TNFΞ± antibodies.</p> <p>Conclusion</p> <p>Rpf proteins may have a significant physiological role for development of chronic TB infection and its reactivation <it>in vivo</it>.</p

    A Novel Anti-Influenza Copper Oxide Containing Respiratory Face Mask

    Get PDF
    Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission, rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into polymeric materials, conferring them with potent biocidal properties.. The copper oxide containing masks successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN 14683:2005 and NIOSH N95 standards.Impregnation of copper oxide into respiratory protective face masks endows them with potent anti-influenza biocidal properties without altering their physical barrier properties. The use of biocidal masks may significantly reduce the risk of hand or environmental contamination, and thereby subsequent infection, due to improper handling and disposal of the masks

    Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21

    Get PDF
    Background: The oncolytic virus, coxsackievirus A21 (CVA21), has shown promise as a single agent in several clinical trials and is now being tested in combination with immune checkpoint blockade. Combination therapies offer the best chance of disease control; however, the design of successful combination strategies requires a deeper understanding of the mechanisms underpinning CVA21 efficacy, in particular, the role of CVA21 anti-tumor immunity. Therefore, this study aimed to examine the ability of CVA21 to induce human anti-tumor immunity, and identify the cellular mechanism responsible. Methods: This study utilized peripheral blood mononuclear cells from i) healthy donors, ii) Acute Myeloid Leukemia (AML) patients, and iii) patients taking part in the STORM clinical trial, who received intravenous CVA21; patients receiving intravenous CVA21 were consented separately in accordance with local institutional ethics review and approval. Collectively, these blood samples were used to characterize the development of innate and adaptive anti-tumor immune responses following CVA21 treatment. Results: An Initial characterization of peripheral blood mononuclear cells, collected from cancer patients following intravenous infusion of CVA21, confirmed that CVA21 activated immune effector cells in patients. Next, using hematological disease models which were sensitive (Multiple Myeloma; MM) or resistant (AML) to CVA21-direct oncolysis, we demonstrated that CVA21 stimulated potent anti-tumor immune responses, including: 1) cytokine-mediated bystander killing; 2) enhanced natural killer cell-mediated cellular cytotoxicity; and 3) priming of tumor-specific cytotoxic T lymphocytes, with specificity towards known tumor-associated antigens. Importantly, immune-mediated killing of both MM and AML, despite AML cells being resistant to CVA21-direct oncolysis, was observed. Upon further examination of the cellular mechanisms responsible for CVA21-induced anti-tumor immunity we have identified the importance of type I IFN for NK cell activation, and demonstrated that both ICAM-1 and plasmacytoid dendritic cells were key mediators of this response. Conclusion: This work supports the development of CVA21 as an immunotherapeutic agent for the treatment of both AML and MM. Additionally, the data presented provides an important insight into the mechanisms of CVA21-mediated immunotherapy to aid the development of clinical biomarkers to predict response and rationalize future drug combinations

    Risk adjustment for inter-hospital comparison of primary cesarean section rates: need, validity and parsimony

    Get PDF
    BACKGROUND: Cesarean section rates is often used as an indicator of quality of care in maternity hospitals. The assumption is that lower rates reflect in developed countries more appropriate clinical practice and general better performances. Hospitals are thus often ranked on the basis of caesarean section rates. The aim of this study is to assess whether the adjustment for clinical and sociodemographic variables of the mother and the fetus is necessary for inter-hospital comparisons of cesarean section (c-section) rates and to assess whether a risk adjustment model based on a limited number of variables could be identified and used. METHODS: Discharge abstracts of labouring women without prior cesarean were linked with abstracts of newborns discharged from 29 hospitals of the Emilia-Romagna Region (Italy) from 2003 to 2004. Adjusted ORs of cesarean by hospital were estimated by using two logistic regression models: 1) a full model including the potential confounders selected by a backward procedure; 2) a parsimonious model including only actual confounders identified by the "change-in-estimate" procedure. Hospital rankings, based on ORs were examined. RESULTS: 24 risk factors for c-section were included in the full model and 7 (marital status, maternal age, infant weight, fetopelvic disproportion, eclampsia or pre-eclampsia, placenta previa/abruptio placentae, malposition/malpresentation) in the parsimonious model. Hospital ranking using the adjusted ORs from both models was different from that obtained using the crude ORs. The correlation between the rankings of the two models was 0.92. The crude ORs were smaller than ORs adjusted by both models, with the parsimonious ones producing more precise estimates. CONCLUSION: Risk adjustment is necessary to compare hospital c-section rates, it shows differences in rankings and highlights inappropriateness of some hospitals. By adjusting for only actual confounders valid and more precise estimates could be obtained

    Colossal Aggregations of Giant Alien Freshwater Fish as a Potential Biogeochemical Hotspot

    Get PDF
    The ubiquity and fascinating nature of animal aggregations are widely recognised. We report here consistent and previously undocumented occurences of aggregations of a giant alien freshwater fish, the Wels catfish (Silurus glanis). Aggregative groups were on average composed of 25 (Β±10 SD, ranging from 15 to 44) adults with estimated average total biomass of 651 kg (386 – 1132) and biomass density of 23 kg mβˆ’2 (14 – 40). Aggregations always occurred within the same location. No foraging, reproductive or anti-predator behaviour were observed during the aggregations. A mass-balance model estimated that these colossal aggregations of an alien species can locally release, through excretion only, up to 70 mg P mβˆ’2 hβˆ’1 and 400 mg N mβˆ’2 hβˆ’1, potentially representing the highest biogeochemical hotspots reported in freshwater ecosystems and another unexpected ecological effect of alien species

    Human-Like Receptor Specificity Does Not Affect the Neuraminidase-Inhibitor Susceptibility of H5N1 Influenza Viruses

    Get PDF
    If highly pathogenic H5N1 influenza viruses acquire affinity for human rather than avian respiratory epithelium, will their susceptibility to neuraminidase (NA) inhibitors (the likely first line of defense against an influenza pandemic) change as well? Adequate pandemic preparedness requires that this question be answered. We generated and tested 31 recombinants of A/Vietnam/1203/04 (H5N1) influenza virus carrying single, double, or triple mutations located within or near the receptor binding site in the hemagglutinin (HA) glycoprotein that alter H5 HA binding affinity or specificity. To gain insight into how combinations of HA and NA mutations can affect the sensitivity of H5N1 virus to NA inhibitors, we also rescued viruses carrying the HA changes together with the H274Y NA substitution, which was reported to confer resistance to the NA inhibitor oseltamivir. Twenty viruses were genetically stable. The triple N158S/Q226L/N248D HA mutation (which eliminates a glycosylation site at position 158) caused a switch from avian to human receptor specificity. In cultures of differentiated human airway epithelial (NHBE) cells, which provide an ex vivo model that recapitulates the receptors in the human respiratory tract, none of the HA-mutant recombinants showed reduced susceptibility to antiviral drugs (oseltamivir or zanamivir). This finding was consistent with the results of NA enzyme inhibition assay, which appears to predict influenza virus susceptibility in vivo. Therefore, acquisition of human-like receptor specificity does not affect susceptibility to NA inhibitors. Sequence analysis of the NA gene alone, rather than analysis of both the NA and HA genes, and phenotypic assays in NHBE cells are likely to adequately identify drug-resistant H5N1 variants isolated from humans during an outbreak

    Coordinated and Cohesive Movement of Two Small Conspecific Fish Induced by Eliciting a Simultaneous Optomotor Response

    Get PDF
    BACKGROUND: In animal groups such as herds, schools, and flocks, a certain distance is maintained between adjacent individuals, allowing them to move as a cohesive unit. Proximate causations of the cohesive and coordinated movement under dynamic conditions, however, have been poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We established a novel and simple behavioral assay using pairs of small fish (medaka and dwarf pufferfish) by eliciting a simultaneous optomotor response (OMR). We demonstrated that two homospecific fish began to move cohesively and maintained a distance of 2 to 4 cm between them when an OMR was elicited simultaneously in the fish. The coordinated and cohesive movement was not exhibited under a static condition. During the cohesive movement, the relative position of the two fish was not stable. Furthermore, adult medaka exhibited the cohesive movement but larvae did not, despite the fact that an OMR could be elicited in larvae, indicating that this ability to coordinate movement develops during maturation. The cohesive movement was detected in homospecific pairs irrespective of body-color, sex, or albino mutation, but was not detected between heterospecific pairs, suggesting that coordinated movement is based on a conspecific interaction. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that coordinated behavior between a pair of animals was elicited by a simultaneous OMR in two small fish. This is the first report to demonstrate induction of a schooling-like movement in a pair of fish by an OMR and to investigate the effect of age, sex, body color, and species on coordination between animals under a dynamic condition
    • …
    corecore