896 research outputs found

    Regulation of neutrophil senescence by microRNAs

    Get PDF
    Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease

    The microRNA-29 family in cartilage homeostasis and osteoarthritis

    Get PDF
    MicroRNAs have been shown to function in cartilage development and homeostasis, as well as in progression of osteoarthritis. The objective of the current study was to identify microRNAs involved in the onset or early progression of osteoarthritis and characterise their function in chondrocytes. MicroRNA expression in mouse knee joints post-DMM surgery was measured over 7 days. Expression of miR-29b-3p was increased at day 1 and regulated in the opposite direction to its potential targets. In a mouse model of cartilage injury and in end-stage human OA cartilage, the miR-29 family were also regulated. SOX9 repressed expression of miR-29a-3p and miR-29b-3p via the 29a/b1 promoter. TGFβ1 decreased expression of miR-29a, b and c (3p) in primary chondrocytes, whilst IL-1β increased (but LPS decreased) their expression. The miR-29 family negatively regulated Smad, NFκB and canonical WNT signalling pathways. Expression profiles revealed regulation of new WNT-related genes. Amongst these, FZD3, FZD5, DVL3, FRAT2, CK2A2 were validated as direct targets of the miR-29 family. These data identify the miR-29 family as microRNAs acting across development and progression of OA. They are regulated by factors which are important in OA and impact on relevant signalling pathways

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Metformin Attenuates Palmitate-Induced Endoplasmic Reticulum Stress, Serine Phosphorylation of IRS-1 and Apoptosis in Rat Insulinoma Cells

    Get PDF
    Lipotoxicity refers to cellular dysfunctions caused by elevated free fatty acid levels playing a central role in the development and progression of obesity related diseases. Saturated fatty acids cause insulin resistance and reduce insulin production in the pancreatic islets, thereby generating a vicious cycle, which potentially culminates in type 2 diabetes. The underlying endoplasmic reticulum (ER) stress response can lead to even β-cell death (lipoapoptosis). Since improvement of β-cell viability is a promising anti-diabetic strategy, the protective effect of metformin, a known insulin sensitizer was studied in rat insulinoma cells. Assessment of palmitate-induced lipoapoptosis by fluorescent microscopy and by detection of caspase-3 showed a significant decrease in metformin treated cells. Attenuation of β-cell lipotoxicity was also revealed by lower induction/activation of various ER stress markers, e.g. phosphorylation of eukaryotic initiation factor 2α (eIF2α), c-Jun N-terminal kinase (JNK), insulin receptor substrate-1 (IRS-1) and induction of CCAAT/enhancer binding protein homologous protein (CHOP). Our results indicate that the β-cell protective activity of metformin in lipotoxicity can be at least partly attributed to suppression of ER stress

    Replication Fork Reactivation in a dnaC2 Mutant at Non-Permissive Temperature in Escherichia coli

    Get PDF
    Replicative helicases unwind double-stranded DNA in front of the polymerase and ensure the processivity of DNA synthesis. In Escherichia coli, the helicase loader DnaC as well as factors involved in the formation of the open complex during the initiation of replication and primosomal proteins during the reactivation of arrested replication forks are required to recruit and deposit the replicative helicase onto single-stranded DNA prior to the formation of the replisome. dnaC2 is a thermosensitive allele of the gene specifying the helicase loader; at non-permissive temperature replication cannot initiate, but most ongoing rounds of replication continues through to completion (18% of dnaC2 cells fail to complete replication at non-permissive temperature). An assumption, which may be drawn from this observation, is that only a few replication forks are arrested under normal growth conditions. This assumption, however, is at odds with the severe and deleterious phenotypes associated with a null mutant of priA, the gene encoding a helicase implicated in the reactivation of arrested replication forks. We developed an assay that involves an abrupt inactivation of rounds of synchronized replication in a large population of cells, in order to evaluate the ability of dnaC2 cells to reactivate arrested replication forks at non-permissive temperature. We compared the rate at which arrested replication forks accumulated in dnaC2 priA+ and dnaC2 priA2 cells and observed that this rate was lower in dnaC2 priA+ cells. We conclude that while replication cannot initiate in a dnaC2 mutant at non-permissive temperature, a class of arrested replication forks (PriA-dependent and DnaC-independent) are reactivated within these cells

    A Copine family member, Cpne8, is a candidate quantitative trait gene for prion disease incubation time in mouse

    Get PDF
    Prion disease incubation time in mice is determined by many factors including genetic background. The prion gene itself plays a major role in incubation time; however, other genes are also known to be important. Whilst quantitative trait loci (QTL) studies have identified multiple loci across the genome, these regions are often large, and with the exception of Hectd2 on Mmu19, no quantitative trait genes or nucleotides for prion disease incubation time have been demonstrated. In this study, we use the Northport heterogeneous stock of mice to reduce the size of a previously identified QTL on Mmu15 from approximately 25 to 1.2 cM. We further characterised the genes in this region and identify Cpne8, a member of the copine family, as the most promising candidate gene. We also show that Cpne8 mRNA is upregulated at the terminal stage of disease, supporting a role in prion disease. Applying these techniques to other loci will facilitate the identification of key pathways in prion disease pathogenesis

    Reporting of prognostic markers: current problems and development of guidelines for evidence-based practice in the future

    Get PDF
    Prognostic markers help to stratify patients for treatment by identifying patients with different risks of outcome (e.g. recurrence of disease), and are important tools in the management of cancer and many other diseases. Systematic review and meta-analytical approaches to identifying the most valuable prognostic markers are needed because (sometimes conflicting) evidence relating to markers is often published across a number of studies. To investigate the practicality of this approach, an empirical investigation of a systematic review of tumour markers for neuroblastoma was performed; 260 studies of prognostic markers were identified, which considered 130 different markers

    Dicer and miRNA in relation to clinicopathological variables in colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dicer is aberrantly expressed in several types of cancers. Applying real-time PCR, we detected the expression of Dicer mRNA in normal mucosa (n = 162), primary colorectal cancer (CRC) (n = 162) and liver metastasis (n = 37), and analysed the relationship between Dicer expression and clinicopathological features. We also correlated the expression of Dicer mRNA to the miRNA expression of miR-141, miR-200a, miR-200b, mir-200c and miR-429 in liver metastases.</p> <p>Methods</p> <p>RT-PCR and qPCR were used to analyse the Dicer expression in normal mucosa, primary tumour and liver metastasis by using the High Capacity cDNA Reverse Transcription Kit and TaqMan™<sup>® </sup>Gene Expression assays for <it>Dicer </it>and <it>GAPDH</it>. RT-PCR and qPCR were used to detect miRNA expression in liver metastases by utilizing TaqMan<sup>® </sup>MicroRNA Reverse Transcription Kit and TaqMan<sup>® </sup>miRNA Assays. Statistical analyses were performed with STATISTICA.</p> <p>Results</p> <p>Dicer expression in rectal cancer (3.146 ± 0.953) was higher than in colon cancer (2.703 ± 1.204, P = 0.018). Furthermore the Dicer expression was increased in primary tumours (3.146 ± 0.952) in comparison to that in normal mucosa from rectal cancer patients (2.816 ± 1.009, P = 0.034) but this is not evident in colon cancer patients. Dicer expression in liver metastases was decreased in comparison to that of either normal mucosa or primary tumour in both colon and rectal cancers (P < 0.05). Patients with a high Dicer expression in normal mucosa had a worse prognosis compared to those with a low Dicer expression, independently of gender, age, tumour site, stage and differentiation (P < 0.001, RR 3.682, 95% CI 1.749 - 7.750). In liver metastases, Dicer was positively related to miR-141 (R = 0.419, P = 0.015).</p> <p>Conclusion</p> <p>Dicer is up-regulated in the early development of rectal cancers. An increased expression of Dicer mRNA in normal mucosa from CRC patients is significantly related to poor survival independently of gender, age, tumour site, stage and differentiation.</p

    Obatoclax induces Atg7-dependent autophagy independent of beclin-1 and BAX/BAK

    Get PDF
    Direct pharmacological targeting of the anti-apoptotic B-cell lymphoma-2 (BCL-2) family is an attractive therapeutic strategy for treating cancer. Obatoclax is a pan-BCL-2 family inhibitor currently in clinical development. Here we show that, although obatoclax can induce mitochondrial apoptosis dependent on BCL-2 associated x protein/BCL-2 antagonist killer (BAX/BAK) consistent with its on-target pharmacodynamics, simultaneous silencing of both BAX and BAK did not abolish acute toxicity or loss of clonogenicity. This is despite complete inhibition of apoptosis. Obatoclax dramatically reduced viability without inducing loss of plasma membrane integrity. This was associated with rapid processing of light chain-3 (LC3) and reduction of S6 kinase phosphorylation, consistent with autophagy. Dramatic ultrastructural vacuolation, not typical of autophagy, was also induced. Silencing of beclin-1 failed to prevent LC3 processing, whereas knockout of autophagy-related (Atg)7 abolished LC3 processing but failed to prevent obatoclax-induced loss of clonogenicity or ultrastructural changes. siRNA silencing of Atg7 in BAX/BAK knockout mouse embryonic fibroblasts did not prevent obatoclax-induced loss of viability. Cells selected for obatoclax resistance evaded apoptosis independent of changes in BCL-2 family expression and displayed reduced LC3 processing. In summary, obatoclax exhibits BAX- and BAK-dependent and -independent mechanisms of toxicity and activation of autophagy. Mechanisms other than autophagy and apoptosis are blocked in obatoclax resistant cells and contribute significantly to obatoclax's anticancer efficacy
    corecore