33 research outputs found

    Eight new species of Gomphichis (Orchidaceae, Spiranthoideae) from Colombia

    Get PDF
    Eight new species of the genus Gomphichis from Colombia are described. Each species is illustrated, and detailed habitat and distribution data are provided. A distribution map of the new species is presented. A dichotomous key for determination of the Gomphichis species in northern South America is provided. Conservation status assessments are provided for each species; current International Union for Conservation of Nature (IUCN) Red List categories and criteria are listed. A brief discussion of spiranthoid orchids taxonomy, conservation status of species, endemism in the Andes and paramo are presented

    Genetic diversity in the Andes:variation within and between the South American species of <i>Oreobolus</i> R. Br. (Cyperaceae)

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.This study examines genetic relationships among and within the South American species of Oreobolus that span the temperate and tropical Andes hotspots and represent a good case study to investigate diversification in the Páramo. A total of 197 individuals covering the distributional range of most of these species were sequenced for the nuclear ribosomal internal transcribed spacer (ITS) and 118 individuals for three chloroplast DNA regions (trnL-F, trnH-psbA and rpl32-trnL). Haplotype networks and measures of genetic diversity were calculated at different taxonomic and geographic levels. To test for possible geographic structure, a spatial analysis of molecular variance (SAMOVA) was undertaken and species relationships were recovered using a coalescent-based approach. Results indicate complex relationships among the five South American species of Oreobolus, which are likely to have been confounded by incomplete lineage sorting, though hybridization cannot be completely discarded as an influence on genetic patterns, particularly among the northern populations of O. obtusangulus and O. cleefii. We report a case of cryptic speciation in O. obtusangulus where northern and southern populations of morphologically similar individuals are genetically distinct in all analyses. At the population level, the genetic evidence is consistent with contraction and expansion of islands of Páramo vegetation during the climatic fluctuations of the Quaternary, highlighting the role of these processes in shaping modern diversity in that ecosystem.This work was funded by a School of Biological Sciences Scholarship provided through The University of Edinburgh. We thank the herbaria at Aarhus University, (Denmark), Naturalis (The Netherlands) and Reading University (Great Britain) for making material available for DNA extraction. We also thank three anonymous reviewers for their valuable comments and James Nicholls from The University of Edinburgh for assistance with the *BEAST analysis

    As old as the mountains: the radiations of the Ericaceae

    Full text link
    Mountains are often more species-rich than lowlands. This could be the result of migration from lowlands to mountains, of a greater survival rate in mountains, or of a higher diversification rate in mountains. We investigated this question in the globally distributed family Ericaceae, which includes c. 4426 species ranging from sea level to > 5000 m. We predict that the interaction of low specific leaf area (SLA) and montane habitats is correlated with increased diversification rates. A molecular phylogeny of Ericaceae based on rbcL and matK sequence data was built and dated with 18 fossil calibrations and divergence time estimates. We identified radiations using bamm and correlates of diversification rate changes using binary-state speciation and extinction (BiSSE) and multiple-state speciation and extinction (MuSSE) analyses. Analyses revealed six largely montane radiations. Lineages in mountains diversified faster than nonmountain lineages (higher speciation rate, but no difference in extinction rate), and lineages with low SLA diversified faster than high-SLA lineages. Further, habitat and trait had a positive interactive effect on diversification. Our results suggest that the species richness in mountains is the result of increased speciation rather than reduced extinction or increased immigration. Increased speciation in Ericaceae was facilitated by low SLA
    corecore