21 research outputs found

    Bryozoans are Major Modern Builders of South Atlantic Oddly Shaped Reefs

    Get PDF
    Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27961-6.In major modern reef regions, either in the Indo-Pacific or the Caribbean, scleractinian corals are described as the main reef framework builders, often associated with crustose coralline algae. We used underwater cores to investigate Late Holocene reef growth and characterise the main framework builders in the Abrolhos Shelf, the largest and richest modern tropical reef complex in the South Western Atlantic, a scientifically underexplored reef province. Rather than a typical coralgal reef, our results show a complex framework building system dominated by bryozoans. Bryozoans were major components in all cores and age intervals (2,000 yrs BP), accounting for up to 44% of the reef framework, while crustose coralline algae and coral accounted for less than 28 and 23%, respectively. Reef accretion rates varied from 2.7 to 0.9 mm yr−1, which are similar to typical coralgal reefs. Bryozoan functional groups encompassed 20 taxa and Celleporaria atlantica (Busk, 1884) dominated the framework at all cores. While the prevalent mesotrophic conditions may have driven suspensionfeeders’ dominance over photoautotrophs and mixotrophs, we propose that a combination of historical factors with the low storm-disturbance regime of the tropical South Atlantic also contributed to the region’s low diversity, and underlies the unique mushroom shape of the Abrolhos pinnacles.We thank CNPq/FAPES-Sisbiota/PELD, CAPES/IODP, CAPES/Ciências do Mar, and ANP/Brasoil for long term project funding. We also thank ICMBio for research permits and field logistic support, and Conservation International for providing and authorizing the use of the IKONOS image. JMW and JCB are International Visiting Researcher at UFES and JBRJ, supported by the Science Without Borders program. Zá Cajueiro provided invaluable field support and Ronaldo Francini, Carlos Janovitch and Lucio Engler helped in the drilling operations. This is a contribution from the Rede Abrolhos (abrolhos.org)

    Biochemical Trade-Offs: Evidence for Ecologically Linked Secondary Metabolism of the Sponge Oscarella balibaloi

    Get PDF
    Secondary metabolite production is assumed to be costly and therefore the resource allocation to their production should be optimized with respect to primary biological functions such as growth or reproduction. Sponges are known to produce a great diversity of secondary metabolites with powerful biological activities that may explain their domination in some hard substrate communities both in terms of diversity and biomass. Oscarella balibaloi (Homoscleromorpha) is a recently described, highly dynamic species, which often overgrows other sessile marine invertebrates. Bioactivity measurements (standardized Microtox assay) and metabolic fingerprints were used as indicators of the baseline variations of the O. balibaloi secondary metabolism, and related to the sponge reproductive effort over two years. The bioactivity showed a significant seasonal variation with the lowest values at the end of spring and in early summer followed by the highest bioactivity in the late summer and autumn. An effect of the seawater temperature was detected, with a significantly higher bioactivity in warm conditions. There was also a tendency of a higher bioactivity when O. balibaloi was found overgrowing other sponge species. Metabolic fingerprints revealed the existence of three principal metabolic phenotypes: phenotype 1 exhibited by a majority of low bioactive, female individuals, whereas phenotypes 2 and 3 correspond to a majority of highly bioactive, non-reproductive individuals. The bioactivity was negatively correlated to the reproductive effort, minimal bioactivities coinciding with the period of embryogenesis and larval development. Our results fit the Optimal Defense Theory with an investment in the reproduction mainly shaping the secondary metabolism variability, and a less pronounced influence of other biotic (species interaction) and abiotic (temperature) factors
    corecore