118 research outputs found

    How Emotion Strengthens the Recollective Experience: A Time-Dependent Hippocampal Process

    Get PDF
    Emotion significantly strengthens the subjective recollective experience even when objective accuracy of the memory is not improved. Here, we examine if this modulation is related to the effect of emotion on hippocampal-dependent memory consolidation. Two critical predictions follow from this hypothesis. First, since consolidation is assumed to take time, the enhancement in the recollective experience for emotional compared to neutral memories should become more apparent following a delay. Second, if the emotion advantage is critically dependent on the hippocampus, then the effects should be reduced in amnesic patients with hippocampal damage. To test these predictions we examined the recollective experience for emotional and neutral photos at two retention intervals (Experiment 1), and in amnesics and controls (Experiment 2). Emotional memories were associated with an enhancement in the recollective experience that was greatest after a delay, whereas familiarity was not influenced by emotion. In amnesics with hippocampal damage the emotion effect on recollective experience was reduced. Surprisingly, however, these patients still showed a general memory advantage for emotional compared to neutral items, but this effect was manifest primarily as a facilitation of familiarity. The results support the consolidation hypothesis of recollective experience, but suggest that the effects of emotion on episodic memory are not exclusively hippocampally mediated. Rather, emotion may enhance recognition by facilitating familiarity when recollection is impaired due to hippocampal damage

    Assay of Monoacylglycerol Lipase Activity

    Full text link
    Monoacylglycerol lipase (MGL) is a serine hydrolase involved in the biological deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). 2-AG is one of the main endogenous lipid agonists for cannabinoid receptors in the brain and elsewhere in the body. In the central nervous system (CNS), MGL is localized to presynaptic nerve terminals of both excitatory and inhibitory synapses, where it helps control the regulatory actions of 2-AG on synaptic transmission and plasticity. In this chapter, we describe an in vitro method to assess MGL activity by liquid chromatography/mass spectrometry (LC/MS)-based quantitation of the reaction product. This method may be used to determine the basal or altered MGL activity in various cells or animal tissues after pharmacological, genetic, or biological manipulations. In addition, this assay can be used for MGL inhibitor screening using purified recombinant enzyme or MGL-overexpressing cells

    Survival processing in times of stress

    Get PDF
    Recent studies have found that processing information according to an evolutionary relevant (i.e., survival) scenario improves its subsequent memorability, potentially as a result of fitness advantages gained in the ancestral past. So far, research has not revealed much about any proximate mechanisms that might underlie this so-called survival processing advantage in memory. Intriguingly, research has shown that the memorability of stressful situations is enhanced via the release of stress hormones acting on brain regions involved in memory. Since survival situations habitually involve some degree of stress, in the present study, we investigated whether stress serves as a proximate mechanism to promote survival processing. Participants rated words for their relevance to either a survival or a neutral (moving) scenario after they had been exposed to a psychosocial stressor or a no-stress control condition. Surprise retention tests immediately following the rating task revealed that survival processing and acute stress independently boosted memory performance. These results therefore suggest that stress does not serve as a proximate mechanism of the survival processing advantage in memory

    Updating Fearful Memories with Extinction Training during Reconsolidation: A Human Study Using Auditory Aversive Stimuli

    Get PDF
    Learning to fear danger in the environment is essential to survival, but dysregulation of the fear system is at the core of many anxiety disorders. As a consequence, a great interest has emerged in developing strategies for suppressing fear memories in maladaptive cases. Recent research has focused in the process of reconsolidation where memories become labile after being retrieved. In a behavioral manipulation, Schiller et al., (2010) reported that extinction training, administrated during memory reconsolidation, could erase fear responses. The implications of this study are crucial for the possible treatment of anxiety disorders without the administration of drugs. However, attempts to replicate this effect by other groups have been so far unsuccessful. We sought out to reproduce Schiller et al., (2010) findings in a different fear conditioning paradigm based on auditory aversive stimuli instead of electric shock. Following a within-subject design, participants were conditioned to two different sounds and skin conductance response (SCR) was recorded as a measure of fear. Our results demonstrated that only the conditioned stimulus that was reminded 10 minutes before extinction training did not reinstate a fear response after a reminder trial consisting of the presentation of the unconditioned stimuli. For the first time, we replicated Schiller et al., (2010) behavioral manipulation and extended it to an auditory fear conditioning paradigm

    Bi-Directional Effect of Cholecystokinin Receptor-2 Overexpression on Stress-Triggered Fear Memory and Anxiety in the Mouse

    Get PDF
    Fear, an emotional response of animals to environmental stress/threats, plays an important role in initiating and driving adaptive response, by which the homeostasis in the body is maintained. Overwhelming/uncontrollable fear, however, represents a core symptom of anxiety disorders, and may disturb the homeostasis. Because to recall or imagine certain cue(s) of stress/threats is a compulsory inducer for the expression of anxiety, it is generally believed that the pathogenesis of anxiety is associated with higher attention (acquisition) selectively to stress or mal-enhanced fear memory, despite that the actual relationship between fear memory and anxiety is not yet really established. In this study, inducible forebrain-specific cholecystokinin receptor-2 transgenic (IF-CCKR-2 tg) mice, different stress paradigms, batteries of behavioral tests, and biochemical assays were used to evaluate how different CCKergic activities drive fear behavior and hormonal reaction in response to stresses with different intensities. We found that in IF-CCKR-2 tg mice, contextual fear was impaired following 1 trial of footshock, while overall fear behavior was enhanced following 36 trials of footshock, compared to their littermate controls. In contrast to a standard Yerkes-Dodson (inverted-U shaped) stress-fear relationship in control mice, a linearized stress-fear curve was observed in CCKR-2 tg mice following gradient stresses. Moreover, compared to 1 trial, 36 trials of footshock in these transgenic mice enhanced anxiety-like behavior in other behavioral tests, impaired spatial and recognition memories, and prolonged the activation of adrenocorticotropic hormone (ACTH) and glucocorticoids (CORT) following new acute stress. Taken together, these results indicate that stress may trigger two distinctive neurobehavioral systems, depending on both of the intensity of stress and the CCKergic tone in the brain. A “threshold theory” for this two-behavior system has been suggested

    Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain.</p> <p>Results</p> <p>Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes <it>homer1a</it>, <it>arc</it>, <it>zif268</it>, <it>ngfi-b </it>and c-<it>fos </it>in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues.</p> <p>Conclusion</p> <p>The results implicate correlated activity between the cortex and the striatum, especially the nucleus accumbens core and the basolateral amygdala, in the generation of a conditioned motivated state that may promote excessive food intake. The upregulation of a number of genes in unique patterns within corticostriatal, thalamic, and hypothalamic networks suggests that food cues are capable of powerfully altering neuronal processing in areas mediating the integration of emotion, cognition, arousal, and the regulation of energy balance. As many of these genes play a role in plasticity, their upregulation within these circuits may also indicate the neuroanatomic and transcriptional correlates of extinction learning.</p

    Acute effects of trauma-focused research procedures on participant safety and distress

    No full text
    The ethical conduct of research on posttraumatic stress disorder (PTSD) requires assessing the risks to study participants. Some previous findings suggest that patients with PTSD report higher distress compared to non-PTSD participants after trauma-focused research. However, the impact of study participation on participant risk, such as suicidal/homicidal ideation and increased desire to use drugs or alcohol, has not been adequately investigated. Furthermore, systematic evaluation of distress using pre- and post-study assessments, and the effects of study procedures involving exposure to aversive stimuli, are lacking. Individuals with a history of PTSD (n=68) and trauma-exposed non-PTSD controls (n=68) responded to five questions about risk and distress before and after participating in research procedures including a PTSD diagnostic interview and a behavioral task with aversive stimuli consisting of mild electrical shock. The desire to use alcohol or drugs increased modestly with study participation among the subgroup (n=48) of participants with current PTSD. Participation in these research procedures was not associated with increased distress or participant risk, nor did study participation interact with lifetime PTSD diagnosis. These results suggest some increase in distress with active PTSD but a participant risk profile that supports a favorable risk-benefit ratio for conducting research in individuals with PTSD. © 2013

    Microstructure and hardness of copper-carbon nanotube composites consolidated by High Pressure Torsion

    No full text
    Blends of Cu powders and 3 vol.% carbon nanotubes (CNTs) were consolidated by High Pressure Torsion (HPT) at room temperature (RT) and 373 K. The grain size, the lattice defect densities as well as the hardness of the composite samples were determined. It was found that the Cu-CNT composite processed at RI exhibited a half as large mean grain size and a three times higher dislocation density than those observed in the specimens either consolidated from pure Cu powder or processed from bulk Cu by HPT. The small grain size and the pinning effect of CNT fragments on dislocations led to significant twin boundary formation during HPT. The increase of the temperature of HPT-processing to 373 K resulted in a slight increase of the grain size, and a strong decrease of the dislocation density and the twin boundary frequency in the composite. The correlation between the microstructural parameters and the flow stress calculated from the hardness was discussed. (C) 2011 Elsevier B.V. All rights reserved.X114041sciescopu
    corecore