175 research outputs found

    Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells.</p> <p>Results</p> <p>We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers.</p> <p>Conclusion</p> <p>We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.</p

    Tamoxifen and the Rafoxifene analog LY117018: their effects on arachidonic acid release from cells in culture and on prostaglandin I(2 )production by rat liver cells

    Get PDF
    BACKGROUND: Tamoxifen is being used successfully to treat breast cancer. However, tamoxifen also increases the risk of developing endometrial cancer in postmenopausal women. Raloxifene also decreases breast cancer in women at high risk and may have a lower risk at developing cancer of the uterus. Tamoxifen has been shown to stimulate arachidonic acid release from rat liver cells. I have postulated that arachidonic acid release from cells may be associated with cancer chemoprevention. METHODS: Rat liver, rat glial, human colon carcinoma and human breast carcinoma cells were labelled with [(3)H] arachidonic acid. The release of the radiolabel from these cells during incubation with tamoxifen and the raloxifene analog LY117018 was measured. The prostaglandin I(2 )produced during incubation of the rat liver cells with μM concentrations of tamoxifen and the raloxifene analog was quantitatively estimated. RESULTS: Tamoxifen is about 5 times more effective than LY117018 at releasing arachidonic acid from all the cells tested. In rat liver cells only tamoxifen stimulates basal prostaglandin I(2 )production and that induced by lactacystin and 12-O-tetradecanoyl-phorbol-13-acetate. LY117018, however, blocks the tamoxifen stimulated prostaglandin production. The stimulated prostaglandin I(2 )production is rapid and not affected either by preincubation of the cells with actinomycin or by incubation with the estrogen antagonist ICI-182,780. CONCLUSIONS: Tamoxifen and the raloxifene analog, LY117018, may prevent estrogen-independent as well as estrogen-dependent breast cancer by stimulating phospholipase activity and initiating arachidonic acid release. The release of arachidonic acid and/or molecular reactions that accompany that release may initiate pathways that prevent tumor growth. Oxygenation of the intracellularly released arachidonic acid and its metabolic products may mediate some of the pharmacological actions of tamoxifen and raloxifene

    Neuroprotection by leptin in a rat model of permanent cerebral ischemia: effects on STAT3 phosphorylation in discrete cells of the brain

    Get PDF
    In addition to its effects in the hypothalamus to control body weight, leptin is involved in the regulation of neuronal function, development and survival. Recent findings have highlighted the neuroprotective effects of leptin against ischemic brain injury; however, to date, little is known about the role performed by the signal transducer and activator of transcription (STAT)-3, a major mediator of leptin receptor transduction pathway in the brain, in the beneficial effects of the hormone. Our data demonstrate that systemic acute administration of leptin produces neuroprotection in rats subjected to permanent middle cerebral artery occlusion (MCAo), as revealed by a significant reduction of the brain infarct volume and neurological deficit up to 7 days after the induction of ischemia. By combining a subcellular fractionation approach with immunohistofluorescence, we observe that neuroprotection is associated with a cell type-specific modulation of STAT3 phosphorylation in the ischemic cortex. The early enhancement of nuclear phospho-STAT3 induced by leptin in the astrocytes of the ischemic penumbra may contribute to a beneficial effect of these cells on the evolution of tissue damage. In addition, the elevation of phospho-STAT3 induced by leptin in the neurons after 24 h MCAo is associated with an increased expression of tissue inhibitor of matrix metalloproteinases-1 in the cortex, suggesting its possible involvement to the neuroprotection produced by the adipokine

    Site-1 protease function is essential for the generation of antibody secreting cells and reprogramming for secretory activity

    Get PDF
    The unfolded protein response (UPR) and activation of XBP1 is necessary for high secretory efficiency and functional differentiation of antibody secreting cells (ASCs). The UPR additionally includes a branch in which membrane-bound transcription factors, exemplified by ATF6, undergo intramembrane-proteolysis by the sequential action of site-1 (MBTPS1/S1P) and site-2 proteases (MBTPS2/S2P) and release of the cytoplasmic domain as an active transcription factor. Such regulation is shared with a family of CREB3-related transcription factors and sterol regulatory element-binding proteins (SREBPs). Of these, we identify that the CREB3 family member CREB3L2 is strongly induced and activated during the transition from B-cell to plasma cell state. Inhibition of site-1 protease leads to a profound reduction in plasmablast number linked to induction of autophagy. Plasmablasts generated in the presence of site-1 protease inhibitor segregated into CD38high and CD38low populations, the latter characterized by a marked reduction in the capacity to secrete IgG. Site-1 protease inhibition is accompanied by a distinctive change in gene expression associated with amino acid, steroid and fatty acid synthesis pathways. These results demonstrate that transcriptional control of metabolic programs necessary for secretory activity can be targeted via site-1 protease inhibition during ASC differentiation

    TNFR1 and TNFR2 regulate the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms

    Get PDF
    The huge majority of myeloma cell lines express TNFR2 while a substantial subset of them failed to show TNFR1 expression. Stimulation of TNFR1 in the TNFR1-expressing subset of MM cell lines had no or only a very mild effect on cellular viability. Surprisingly, however, TNF stimulation enhanced cell death induction by CD95L and attenuated the apoptotic effect of TRAIL. The contrasting regulation of TRAIL- and CD95L-induced cell death by TNF could be traced back to the concomitant NFκB-mediated upregulation of CD95 and the antiapoptotic FLIP protein. It appeared that CD95 induction, due to its strength, overcompensated a rather moderate upregulation of FLIP so that the net effect of TNF-induced NFκB activation in the context of CD95 signaling is pro-apoptotic. TRAIL-induced cell death, however, was antagonized in response to TNF because in this context only the induction of FLIP is relevant. Stimulation of TNFR2 in myeloma cells leads to TRAF2 depletion. In line with this, we observed cell death induction in TNFR1-TNFR2-costimulated JJN3 cells. Our studies revealed that the TNF-TNF receptor system adjusts the responsiveness of the extrinsic apoptotic pathway in myeloma cells by multiple mechanisms that generate a highly context-dependent net effect on myeloma cell survival

    MicroRNA-135b Regulates Leucine Zipper Tumor Suppressor 1 in Cutaneous Squamous Cell Carcinoma

    Get PDF
    Cutaneous squamous cell carcinoma (cSCC) is the second most common skin malignancy and it presents a therapeutic challenge in organ transplant recipient patients. Despite the need, there are only a few targeted drug treatment options. Recent studies have revealed a pivotal role played by microRNAs (miRNAs) in multiple cancers, but only a few studies tested their function in cSCC. Here, we analyzed differential expression of 88 cancer related miRNAs in 43 study participants with cSCC; 32 immunocompetent, 11 OTR patients, and 15 non-lesional skin samples by microarray analysis. Of the examined miRNAs, miR-135b was the most upregulated (13.3-fold, 21.5-fold; p=0.0001) in both patient groups. Similarly, the miR-135b expression was also upregulated in three cSCC cell lines when evaluated by quantitative real-time PCR. In functional studies, inhibition of miR-135b by specific anti-miR oligonucleotides resulted in upregulation of its target gene LZTS1 mRNA and protein levels and led to decreased cell motility and invasion of both primary and metastatic cSCC cell lines. In contrast, miR-135b overexpression by synthetic miR-135b mimic induced further down-regulation of LZTS1 mRNA in vitro and increased cancer cell motility and invasiveness. Immunohistochemical evaluation of 67 cSCC tumor tissues demonstrated that miR-135b expression inversely correlated with LZTS1 staining intensity and the tumor grade. These results indicate that miR-135b functions as an oncogene in cSCC and provide new understanding into its pathological role in cSCC progression and invasiveness

    Functionally Distinct Subpopulations of CpG-Activated Memory B Cells

    Get PDF
    During the human B cell (Bc) recall response, rapid cell division results in multiple Bc subpopulations. The TLR-9 agonist CpG oligodeoxynucleotide, combined with cytokines, causes Bc activation and division in vitro and increased CD27 surface expression in a sub-population of Bc. We hypothesized that the proliferating CD27lo subpopulation, which has a lower frequency of antibody-secreting cells (ASC) than CD27hi plasmablasts, provides alternative functions such as cytokine secretion, costimulation, or antigen presentation. We performed genome-wide transcriptional analysis of CpG activated Bc sorted into undivided, proliferating CD27lo and proliferating CD27hi subpopulations. Our data supported an alternative hypothesis, that CD27lo cells are a transient pre-plasmablast population, expressing genes associated with Bc receptor editing. Undivided cells had an active transcriptional program of non-ASC B cell functions, including cytokine secretion and costimulation, suggesting a link between innate and adaptive Bc responses. Transcriptome analysis suggested a gene regulatory network for CD27lo and CD27hi Bc differentiation

    New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum

    Get PDF
    Background: The emergence and spread of Plasmodium falciparum resistance to artemisinin-based combination therapy in Southeast Asia prompted the need to develop new endoperoxide-type drugs. Methods: A chemically diverse library of endoperoxides was designed and synthesized. The compounds were screened for in vitro and in vivo anti-malarial activity using, respectively, the SYBR Green I assay and a mouse model. Ring survival and mature stage survival assays were performed against artemisinin-resistant and artemisinin-sensitive P. falciparum strains. Cytotoxicity was evaluated against mammalian cell lines V79 and HepG2, using the MTT assay. Results: The synthesis and anti-malarial activity of 21 new endoperoxide-derived compounds is reported, where the peroxide pharmacophore is part of a trioxolane (ozonide) or a tetraoxane moiety, flanked by adamantane and a substituted cyclohexyl ring. Eight compounds exhibited sub-micromolar anti-malarial activity (IC50 0.3–71.1 nM), no cross-resistance with artemisinin or quinolone derivatives and negligible cytotoxicity towards mammalian cells. From these, six produced ring stage survival < 1% against the resistant strain IPC5202 and three of them totally suppressed Plasmodium berghei parasitaemia in mice after oral administration. Conclusion: The investigated, trioxolane–tetrazole conjugates LC131 and LC136 emerged as potential anti-malarial candidates; they show negligible toxicity towards mammalian cells, ability to kill intra-erythrocytic asexual stages of artemisinin-resistant P. falciparum and capacity to totally suppress P. berghei parasitaemia in mice.info:eu-repo/semantics/publishedVersio

    Induction of the interleukin 6/ signal transducer and activator of transcription pathway in the lungs of mice sub-chronically exposed to mainstream tobacco smoke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tobacco smoking is associated with lung cancer and other respiratory diseases. However, little is known about the global molecular changes that precede the appearance of clinically detectable symptoms. In this study, the effects of mainstream tobacco smoke (MTS) on global transcription in the mouse lung were investigated.</p> <p>Methods</p> <p>Male C57B1/CBA mice were exposed to MTS from two cigarettes daily, 5 days/week for 6 or 12 weeks. Mice were sacrificed immediately, or 6 weeks following the last cigarette. High density DNA microarrays were used to characterize global gene expression changes in whole lung. Microarray results were validated by Quantitative real-time RT-PCR. Further analysis of protein synthesis and function was carried out for a select set of genes by ELISA and Western blotting.</p> <p>Results</p> <p>Globally, seventy nine genes were significantly differentially expressed following the exposure to MTS. These genes were associated with a number of biological processes including xenobiotic metabolism, redox balance, oxidative stress and inflammation. There was no differential gene expression in mice exposed to smoke and sampled 6 weeks following the last cigarette. Moreover, cluster analysis demonstrated that these samples clustered alongside their respective controls. We observed simultaneous up-regulation of <it>interleukin 6 </it>(<it>IL-6</it>) and its antagonist, <it>suppressor of cytokine signalling </it>(<it>SOCS3</it>) mRNA following 12 weeks of MTS exposure. Analysis by ELISA and Western blotting revealed a concomitant increase in total IL-6 antigen levels and its downstream targets, including phosphorylated signal transducer and activator of transcription 3 (Stat3), basal cell-lymphoma extra large (BCL-XL) and myeloid cell leukemia 1 (MCL-1) protein, in total lung tissue extracts. However, in contrast to gene expression, a subtle decrease in total SOCS3 protein was observed after 12 weeks of MTS exposure.</p> <p>Conclusion</p> <p>Global transcriptional analysis identified a set of genes responding to MTS exposure in mouse lung. These genes returned to basal levels following smoking cessation, providing evidence to support the benefits of smoking cessation. Detailed analyses were undertaken for IL-6 and its associated pathways. Our results provide further insight into the role of these pathways in lung injury and inflammation induced by MTS.</p
    • …
    corecore