77 research outputs found

    Profiling microRNAs in individuals at risk of progression to rheumatoid arthritis

    Get PDF
    Background: Individuals at risk of rheumatoid arthritis (RA) demonstrate systemic autoimmunity in the form of anti-citrullinated peptide antibodies (ACPA). MicroRNAs (miRNAs) are implicated in established RA. This study aimed to (1) compare miRNA expression between healthy individuals and those at risk of and those that develop RA, (2) evaluate the change in expression of miRNA from "at-risk" to early RA and (3) explore whether these miRNAs could inform a signature predictive of progression from "at-risk" to RA. Methods: We performed global profiling of 754 miRNAs per patient on a matched serum sample cohort of 12 anti-cyclic citrullinated peptide (CCP) + "at-risk" individuals that progressed to RA. Each individual had a serum sample from baseline and at time of detection of synovitis, forming the matched element. Healthy controls were also studied. miRNAs with a fold difference/fold change of four in expression level met our primary criterion for selection as candidate miRNAs. Validation of the miRNAs of interest was conducted using custom miRNA array cards on matched samples (baseline and follow up) in 24 CCP+ individuals; 12 RA progressors and 12 RA non-progressors. Results: We report on the first study to use matched serum samples and a comprehensive miRNA array approach to identify in particular, three miRNAs (miR-22, miR-486-3p, and miR-382) associated with progression from systemic autoimmunity to RA inflammation. MiR-22 demonstrated significant fold difference between progressors and non-progressors indicating a potential biomarker role for at-risk individuals. Conclusions: This first study using a cohort with matched serum samples provides important mechanistic insights in the transition from systemic autoimmunity to inflammatory disease for future investigation, and with further evaluation, might also serve as a predictive biomarker

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    Unidirectional relationship between heroin self-administration and impulsive decision-making in rats

    Get PDF
    Rationale: There is growing clinical evidence for a strong relationship between drug addiction and impulsivity. However, it is not fully clear whether impulsivity is a pre-existing trait or a consequence of drug abuse. Recent observations in the animal models show that pre-existing levels of impulsivity predict cocaine and nicotine seeking. Whether such relationships also exist with respect to non-stimulant drugs is largely unknown. Objective: We studied the relationship between impulsive choice and vulnerability to heroin taking and seeking. Materials and methods: Rats were selected in the delayed reward task based on individual differences in impulsive choice. Subsequently, heroin intravenous self-administration behaviour was analysed, including acquisition of heroin intake, motivation, extinction and drug- and cue-induced reinstatement. Throughout the entire experiment, changes in impulsive choice were monitored weekly. Results and discussion: High impulsivity did not predict measures of heroin taking. Moreover, high impulsive rats did not differ from low impulsive rats in extinction rates or heroin- and cue-induced reinstatement. However, both groups became more impulsive as heroin self-administration continued. During abstinence, impulsivity levels returned towards baseline (pre-heroin) levels. Our results indicate that, in contrast to psychostimulants, impulsive choice does not predict vulnerability to heroin seeking and taking. Conclusion: These data implicate that different neural mechanisms may underlie the vulnerability to opiate and psychostimulant dependence. Moreover, our data suggest that elevated impulsivity levels as observed in heroin-dependent subjects are a consequence of heroin intake rather than a pre-existing vulnerability trait. © 2011 The Author(s)

    GABAA Receptor-Mediated Acceleration of Aging-Associated Memory Decline in APP/PS1 Mice and Its Pharmacological Treatment by Picrotoxin

    Get PDF
    Advanced age and mutations in the genes encoding amyloid precursor protein (APP) and presenilin (PS1) are two serious risk factors for Alzheimer's disease (AD). Finding common pathogenic changes originating from these risks may lead to a new therapeutic strategy. We observed a decline in memory performance and reduction in hippocampal long-term potentiation (LTP) in both mature adult (9–15 months) transgenic APP/PS1 mice and old (19–25 months) non-transgenic (nonTg) mice. By contrast, in the presence of bicuculline, a GABAA receptor antagonist, LTP in adult APP/PS1 mice and old nonTg mice was larger than that in adult nonTg mice. The increased LTP levels in bicuculline-treated slices suggested that GABAA receptor-mediated inhibition in adult APP/PS1 and old nonTg mice was upregulated. Assuming that enhanced inhibition of LTP mediates memory decline in APP/PS1 mice, we rescued memory deficits in adult APP/PS1 mice by treating them with another GABAA receptor antagonist, picrotoxin (PTX), at a non-epileptic dose for 10 days. Among the saline vehicle-treated groups, substantially higher levels of synaptic proteins such as GABAA receptor α1 subunit, PSD95, and NR2B were observed in APP/PS1 mice than in nonTg control mice. This difference was insignificant among PTX-treated groups, suggesting that memory decline in APP/PS1 mice may result from changes in synaptic protein levels through homeostatic mechanisms. Several independent studies reported previously in aged rodents both an increased level of GABAA receptor α1 subunit and improvement of cognitive functions by long term GABAA receptor antagonist treatment. Therefore, reduced LTP linked to enhanced GABAA receptor-mediated inhibition may be triggered by aging and may be accelerated by familial AD-linked gene products like Aβ and mutant PS1, leading to cognitive decline that is pharmacologically treatable at least at this stage of disease progression in mice

    Effects of the cannabinoid CB1 receptor antagonist rimonabant on distinct measures of impulsive behavior in rats

    Get PDF
    Rationale Pathological impulsivity is a prominent feature in several psychiatric disorders, but detailed understanding of the specific neuronal processes underlying impulsive behavior is as yet lacking. Objectives As recent findings have suggested involvement of the brain cannabinoid system in impulsivity, the present study aimed at further elucidating the role of cannabinoid CB1 receptor activation in distinct measures of impulsive behavior. Materials and methods The effects of the selective cannabinoid CB1 receptor antagonist, rimonabant (SR141716A) and agonist WIN55,212-2 were tested in various measures of impulsive behavior, namely, inhibitory control in a five-choice serial reaction time task (5-CSRTT), impulsive choice in a delayed reward paradigm, and response inhibition in a stop-signal paradigm. Results In the 5-CSRTT, SR141716A dose-dependently improved inhibitory control by decreasing the number of premature responses. Furthermore, SR141716A slightly improved attentional function, increased correct response latency, but did not affect other parameters. The CB1 receptor agonist WIN55,212-2 did not change inhibitory control in the 5-CSRTT and only increased response latencies and errors of omissions. Coadministration of WIN55,212-2 prevented the effects of SR141716A on inhibitory control in the 5-CSRTT. Impulsive choice and response inhibition were not affected by SR141716A at any dose, whereas WIN55,212-2 slightly impaired response inhibition but did not change impulsive choice. Conclusions The present data suggest that particularly the endocannabinoid system seems involved in some measures of impulsivity and provides further evidence for the existence of distinct forms of impulsivity that can be pharmacologically dissociated

    The Relationship between Impulsive Choice and Impulsive Action: A Cross-Species Translational Study

    Get PDF
    Maladaptive impulsivity is a core symptom in various psychiatric disorders. However, there is only limited evidence available on whether different measures of impulsivity represent largely unrelated aspects or a unitary construct. In a cross-species translational study, thirty rats were trained in impulsive choice (delayed reward task) and impulsive action (five-choice serial reaction time task) paradigms. The correlation between those measures was assessed during baseline performance and after pharmacological manipulations with the psychostimulant amphetamine and the norepinephrine reuptake inhibitor atomoxetine. In parallel, to validate the animal data, 101 human subjects performed analogous measures of impulsive choice (delay discounting task, DDT) and impulsive action (immediate and delayed memory task, IMT/DMT). Moreover, all subjects completed the Stop Signal Task (SST, as an additional measure of impulsive action) and filled out the Barratt impulsiveness scale (BIS-11). Correlations between DDT and IMT/DMT were determined and a principal component analysis was performed on all human measures of impulsivity. In both rats and humans measures of impulsive choice and impulsive action did not correlate. In rats the within-subject pharmacological effects of amphetamine and atomoxetine did not correlate between tasks, suggesting distinct underlying neural correlates. Furthermore, in humans, principal component analysis identified three independent factors: (1) self-reported impulsivity (BIS-11); (2) impulsive action (IMT/DMT and SST); (3) impulsive choice (DDT). This is the first study directly comparing aspects of impulsivity using a cross-species translational approach. The present data reveal the non-unitary nature of impulsivity on a behavioral and pharmacological level. Collectively, this warrants a stronger focus on the relative contribution of distinct forms of impulsivity in psychopathology

    Reconciling conflicting clinical studies of antioxidant supplementation as HIV therapy: a mathematical approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small, highly reactive molecules called reactive oxygen species (ROS) play a crucial role in cell signalling and infection control. However, high levels of ROS can cause significant damage to cell structure and function. Studies have shown that infection with the human immunodeficiency virus (HIV) results in increased ROS concentrations, which can in turn lead to faster progression of HIV infection, and cause CD4<sup>+ </sup>T-cell apoptosis. To counteract these effects, clinical studies have explored the possibility of raising antioxidant levels, with mixed results.</p> <p>Methods</p> <p>In this paper, a mathematical model is used to explore this potential therapy, both analytically and numerically. For the numerical work, we use clinical data from both HIV-negative and HIV-positive injection drug users (IDUs) to estimate model parameters; these groups have lower baseline concentrations of antioxidants than non-IDU controls.</p> <p>Results</p> <p>Our model suggests that increases in CD4<sup>+ </sup>T cell concentrations can result from moderate levels of daily antioxidant supplementation, while excessive supplementation has the potential to cause periods of immunosuppression.</p> <p>Conclusion</p> <p>We discuss implications for HIV therapy in IDUs and other populations which may have low baseline concentrations of antioxidants.</p
    • …
    corecore