6 research outputs found

    Contextualizing students' alcohol use perceptions and practices within French culture: an analysis of gender and drinking among sport-science college students

    Get PDF
    Although research has examined alcohol consumption and sport in a variety of contexts, there is a paucity of research on gender and gender dynamics among French college students. The present study addresses this gap in the literature by examining alcohol use practices by men and women among a non-probability sample of French sport science students from five different universities in Northern France. We utilized both survey data (N = 534) and in-depth qualitative interviews (n = 16) to provide empirical and theoretical insight into a relatively ubiquitous health concern: the culture of intoxication. Qualitative data were based on students’ perceptions of their own alcohol use; analysis were framed by theoretical conceptions of gender. Survey results indicate gender differences in alcohol consumption wherein men reported a substantially higher frequency and quantity of alcohol use compared to their female peers. Qualitative findings confirm that male privilege and women’s concern for safety, masculine embodiment via alcohol use, gendering of alcohol type, and gender conformity pressures shape gender disparities in alcohol use behavior. Our findings also suggest that health education policy and educational programs focused on alcohol-related health risks need to be designed to take into account gender category and gender orientation

    Chromo- and Fluorogenic Organometallic Sensors

    Get PDF
    Compounds that change their absorption and/or emission properties in the presence of a target ion or molecule have been studied for many years as the basis for optical sensing. Within this group of compounds, a variety of organometallic complexes have been proposed for the detection of a wide range of analytes such as cations (including H+), anions, gases (e.g. O 2, SO2, organic vapours), small organic molecules, and large biomolecules (e.g. proteins, DNA). This chapter focuses on work reported within the last few years in the area of organometallic sensors. Some of the most extensively studied systems incorporate metal moieties with intense long-lived metal-to-ligand charge transfer (MLCT) excited states as the reporter or indicator unit, such as fac-tricarbonyl Re(I) complexes, cyclometallated Ir(III) species, and diimine Ru(II) or Os(II) derivatives. Other commonly used organometallic sensors are based on Pt-alkynyls and ferrocene fragments. To these reporters, an appropriate recognition or analyte-binding unit is usually attached so that a detectable modification on the colour and/or the emission of the complex occurs upon binding of the analyte. Examples of recognition sites include macrocycles for the binding of cations, H-bonding units selective to specific anions, and DNA intercalating fragments. A different approach is used for the detection of some gases or vapours, where the sensor's response is associated with changes in the crystal packing of the complex on absorption of the gas, or to direct coordination of the analyte to the metal centre

    Engineering nanoscopic macromolecules for applications: Stars versus dendrimers for catalysis and sensoring

    No full text
    International audienceDendrimers show steric bulk on their surface while, in star molecules, there is more bulk on the core than on the periphery. Thus catalysts, which require as little steric congestion as possible around the catalytic centers, are attached to the branch termini of stars rather than to those of dendrimers. On the other hand, for recognition and sensoring, redox centers located on surface cavities of dendrimers are highly efficient as the surface channels allowing substrates to penetrate into these cavities are narrow (dendritic effect)

    Chiral side groups trigger second harmonic generation activity in 3D octupolar bipyrimidine-based organic liquid crystals

    No full text
    The design of efficient noncentrosymmetric materials remains the ultimate goal in the field of organic second-order nonlinear optics. Unlike inorganic crystals currently used in second-order nonlinear optical applications, organic materials are an attractive alternative owing to their fast electro-optical response and processability, but their alignment into noncentrosymmetric film remains challenging. Here, symmetry breaking by judicious functionalization of 3D organic octupoles allows the emergence of multifunctional liquid crystalline chromophores which can easily be processed into large, flexible, thin, and self-oriented films with second harmonic generation responses competitive to the prototypical inorganic KH2 PO4 crystals. The liquid-crystalline nature of these chiral organic films also permits the modulation of the nonlinear optical properties owing to the sensitivity of the supramolecular organization to temperature, leading to the development of tunable macroscopic materials.status: publishe
    corecore