18 research outputs found

    Apraxia and motor dysfunction in corticobasal syndrome

    Get PDF
    Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS.   Methods: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM.   Results: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/2 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices.   Conclusions: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor cortices, as well as the thalamus, while apraxia correlates with pre-motor and parietal atrophy

    Expression of HA of HPAI H5N1 Virus at US2 Gene Insertion Site of Turkey Herpesvirus Induced Better Protection than That at US10 Gene Insertion Site

    Get PDF
    Herpesvirus of turkey (HVT) is being widely used as a vector for development of recombinant vaccines and US2 and US10 genes are often chosen as insertion sites for targeted gene expression. However, the different effects of the two genes for generation of recombinant HVT vaccines were unknown. In order to compare the effects of inserted genes in the two sites on the efficacy of the recombinant vaccines, host-protective haemagglutinin (HA) gene of the highly pathogenic avian influenza virus (HPAIV) H5N1 was inserted into either US2 or US10 gene locus of the HVT. The resulting US2 (rHVT-US2-HA) or US10 (rHVT-US10-HA) recombinant HVT viruses were used to infect chicken embryo fibroblasts. Plaques and the growth kinetics of rHVT-US2-HA-infected chicken embryo fibroblasts were similar to those of parental HVT whereas rHVT-US10-HA infected chicken embryo fibroblasts had different growth kinetics and plaque formation. The viremia levels in rHVT-US10-HA virus-infected chickens were significantly lower than those of rHVT-US2-HA group on 28 days post infection. The vaccine efficacy of the two recombinant viruses against H5N1 HPAIV and virulent Marek's disease virus was also evaluated in 1-day-old vaccinated chickens. rHVT-US2-HA-vaccinated chickens were better protected with reduced mortality than rHVT-US10-HA-vaccinated animals following HPAIV challenge. Furthermore, the overall hemaglutination inhibition antibody titers of rHVT-US2-HA-vaccinated chickens were higher than those of rHVT-US10-HA-vaccinated chickens. Protection levels against Marek's disease virus challenge following vaccination with either rHVT-US2-HA or rHVT-US10-HA, however, were similar to those of the parental HVT virus. These results, for the first time, indicate that US2 gene provides a favorable foreign gene insertion site for generation of recombinant HVT vaccines

    Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease

    Get PDF
    © 2015 Vadalà et al. Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease

    Recent advances in amyotrophic lateral sclerosis

    Get PDF

    The influence of motor cortical stimulus intensity on the relaxation rate of human lower limb muscles

    No full text
    Item does not contain fulltextTranscranial magnetic stimulation (TMS) allows an in vivo assessment of the rate of muscle relaxation during a voluntary contraction. It is unknown if this method can be applied to lower limb muscles, and the effect of stimulus intensity on relaxation rate has not been investigated in any muscle group. The present study sought to address these unknowns. A secondary aim was to test the sensitivity of the method to a change in muscle length by comparing the relaxation rate of the plantar flexor muscles with the gastrocnemius at short and long lengths. Seven subjects performed 21 maximal voluntary isometric contractions (MVCs) of the dorsiflexors (DF) and plantar flexors with a knee angle of either 90 degrees or 180 degrees (PF90 and PF180, respectively). TMS intensity ranged from 40 to 100% stimulator output in intervals of 10%. Relaxation rates increased with stimulus intensity but were equivalent to maximal output at 50 (DF and PF90) or 60% (PF180). MVC torque was greater, and the rate of relaxation was faster for PF180 compared to PF90. The main findings are that TMS can be used to measure relaxation rates of lower limb muscles, and these rates are robust provided the stimulus intensity is above a critical threshold. The dependency of plantar flexor relaxation rate on the length of the fast-twitch gastrocnemius fibers reinforces published temperature and fatigue data which show that the method is sensitive to the contractile properties of the muscle fibers which are actively contributing to torque production

    Marek's disease virus: from miasma to model

    No full text
    International audienceMarek's disease virus (MDV) is an oncogenic herpesvirus that causes various clinical syndromes in its natural host, the chicken. MDV has long been of interest as a model organism, particularly with respect to the pathogenesis and immune control of virus-induced lymphoma in an easily accessible small-animal system. Recent advances in MDV genetics and the determination of the chicken genome sequence, aided by functional genomics, have begun to dramatically increase our understanding not only of lytic MDV replication, but also of the factors and mechanisms leading to latency and tumour formation. This new information is helping to elucidate cellular signalling pathways that have undergone convergent evolution and are perturbed by different viruses, and emphasizes the value of MDV as a comparative biomedical model. Furthermore, the door is now open for rational and efficient engineering of new vaccines against one of the most important and widespread infectious diseases in chickens
    corecore