2,587 research outputs found

    Lectures on Linear Stability of Rotating Black Holes

    Full text link
    These lecture notes are concerned with linear stability of the non-extreme Kerr geometry under perturbations of general spin. After a brief review of the Kerr black hole and its symmetries, we describe these symmetries by Killing fields and work out the connection to conservation laws. The Penrose process and superradiance effects are discussed. Decay results on the long-time behavior of Dirac waves are outlined. It is explained schematically how the Maxwell equations and the equations for linearized gravitational waves can be decoupled to obtain the Teukolsky equation. It is shown how the Teukolsky equation can be fully separated to a system of coupled ordinary differential equations. Linear stability of the non-extreme Kerr black hole is stated as a pointwise decay result for solutions of the Cauchy problem for the Teukolsky equation. The stability proof is outlined, with an emphasis on the underlying ideas and methods.Comment: 25 pages, LaTeX, 3 figures, lectures given at first DOMOSCHOOL in July 2018, minor improvements (published version

    Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT

    Full text link
    We use AdS/CFT correspondence to study two-particle correlations in heavy ion collisions at strong coupling. Modeling the colliding heavy ions by shock waves on the gravity side, we observe that at early times after the collision there are long-range rapidity correlations present in the two-point functions for the glueball and the energy-momentum tensor operators. We estimate rapidity correlations at later times by assuming that the evolution of the system is governed by ideal Bjorken hydrodynamics, and find that glueball correlations in this state are suppressed at large rapidity intervals, suggesting that late-time medium dynamics can not "wash out" the long-range rapidity correlations that were formed at early times. These results may provide an insight on the nature of the "ridge" correlations observed in heavy ion collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde

    Impact-parameter dependent nuclear parton distribution functions: EPS09s and EKS98s and their applications in nuclear hard processes

    Get PDF
    We determine the spatial (impact parameter) dependence of nuclear parton distribution functions (nPDFs) using the AA-dependence of the spatially independent (averaged) global fits EPS09 and EKS98. We work under the assumption that the spatial dependence can be formulated as a power series of the nuclear thickness functions TAT_A. To reproduce the AA-dependence over the entire xx range we need terms up to [TA]4[T_A]^4. As an outcome, we release two sets, EPS09s (LO, NLO, error sets) and EKS98s, of spatially dependent nPDFs for public use. We also discuss the implementation of these into the existing calculations. With our results, the centrality dependence of nuclear hard-process observables can be studied consistently with the globally fitted nPDFs for the first time. As an application, we first calculate the LO nuclear modification factor RAA1jetR^{1jet}_{AA} for primary partonic-jet production in different centrality classes in Au+Au collisions at RHIC and Pb+Pb collisions at LHC. Also the corresponding central-to-peripheral ratios RCP1jetR_{CP}^{1jet} are studied. We also calculate the LO and NLO nuclear modification factors for single inclusive neutral pion production, RdAuπ0R_{dAu}^{\pi^0}, at mid- and forward rapidities in different centrality classes in d+Au collisions at RHIC. In particular, we show that our results are compatible with the PHENIX mid-rapidity data within the overall normalization uncertainties given by the experiment. Finally, we show our predictions for the corresponding modifications RpPbπ0R_{pPb}^{\pi^0} in the forthcoming p+Pb collisions at LHC.Comment: 36 page

    Limit Cycles in Four Dimensions

    Full text link
    We present an example of a limit cycle, i.e., a recurrent flow-line of the beta-function vector field, in a unitary four-dimensional gauge theory. We thus prove that beta functions of four-dimensional gauge theories do not produce gradient flows. The limit cycle is established in perturbation theory with a three-loop calculation which we describe in detail.Comment: 12 pages, 1 figure. Significant revision of the interpretation of our result. Improved description of three-loop calculatio

    Neural development features: Spatio-temporal development of the Caenorhabditis elegans neuronal network

    Full text link
    The nematode Caenorhabditis elegans, with information on neural connectivity, three-dimensional position and cell linage provides a unique system for understanding the development of neural networks. Although C. elegans has been widely studied in the past, we present the first statistical study from a developmental perspective, with findings that raise interesting suggestions on the establishment of long-distance connections and network hubs. Here, we analyze the neuro-development for temporal and spatial features, using birth times of neurons and their three-dimensional positions. Comparisons of growth in C. elegans with random spatial network growth highlight two findings relevant to neural network development. First, most neurons which are linked by long-distance connections are born around the same time and early on, suggesting the possibility of early contact or interaction between connected neurons during development. Second, early-born neurons are more highly connected (tendency to form hubs) than later born neurons. This indicates that the longer time frame available to them might underlie high connectivity. Both outcomes are not observed for random connection formation. The study finds that around one-third of electrically coupled long-range connections are late forming, raising the question of what mechanisms are involved in ensuring their accuracy, particularly in light of the extremely invariant connectivity observed in C. elegans. In conclusion, the sequence of neural network development highlights the possibility of early contact or interaction in securing long-distance and high-degree connectivity

    Testing the Nambu-Goldstone Hypothesis for Quarks and Leptons at the LHC

    Get PDF
    The hierarchy of the Yukawa couplings is an outstanding problem of the standard model. We present a class of models in which the first and second generation fermions are SUSY partners of pseudo-Nambu-Goldstone bosons that parameterize a non-compact Kahler manifold, explaining the small values of these fermion masses relative to those of the third generation. We also provide an example of such a model. We find that various regions of the parameter space in this scenario can give the correct dark matter abundance, and that nearly all of these regions evade other phenomenological constraints. We show that for gluino mass ~700 GeV, model points from these regions can be easily distinguished from other mSUGRA points at the LHC with only 7 fb^(-1) of integrated luminosity at 14 TeV. The most striking signatures are a dearth of b- and tau-jets, a great number of multi-lepton events, and either an "inverted" slepton mass hierarchy, narrowed slepton mass hierarchy, or characteristic small-mu spectrum.Comment: Corresponds to published versio

    P-odd and CP-odd Four-Quark Contributions to Neutron EDM

    Full text link
    In a class of beyond-standard-model theories, CP-odd observables, such as the neutron electric dipole moment, receive significant contributions from flavor-neutral P-odd and CP-odd four-quark operators. However, considerable uncertainties exist in the hadronic matrix elements of these operators strongly affecting the experimental constraints on CP-violating parameters in the theories. Here we study their hadronic matrix elements in combined chiral perturbation theory and nucleon models. We first classify the operators in chiral representations and present the leading-order QCD evolutions. We then match the four-quark operators to the corresponding ones in chiral hadronic theory, finding symmetry relations among the matrix elements. Although this makes lattice QCD calculations feasible, we choose to estimate the non-perturbative matching coefficients in simple quark models. We finally compare the results for the neutron electric dipole moment and P-odd and CP-odd pion-nucleon couplings with the previous studies using naive factorization and QCD sum rules. Our study shall provide valuable insights on the present hadronic physics uncertainties in these observables.Comment: 40 pages, 7 figures. This is the final version. A discussion of the uncertainty of the calculation is adde

    Mechanism of cigarette smoke condensate-induced acute inflammatory response in human bronchial epithelial cells

    Get PDF
    BACKGROUND: To demonstrate the involvement of tobacco smoking in the pathophysiology of lung disease, the responses of pulmonary epithelial cells to cigarette smoke condensate (CSC) — the particulate fraction of tobacco smoke — were examined. METHODS: The human alveolar epithelial cell line A549 and normal human bronchial epithelial cells (NHBEs) were exposed to 0.4 μg/ml CSC, a concentration that resulted in >90% cell survival and <5% apoptosis. Changes in gene expression and signaling responses were determined by RT-PCR, western blotting and immunocytofluorescence. RESULTS: NHBEs exposed to CSC showed increased expression of the inflammatory mediators sICAM-1, IL-1β, IL-8 and GM-CSF, as determined by RT-PCR. CSC-induced IL-1β expression was reduced by PD98059, a blocker of mitogen-actived protein kinase (MAPK) kinase (MEK), and by PDTC, a NFκB inhibitor. Analysis of intracellular signaling pathways, using antibodies specific for phosphorylated MAPKs (extracellular signal-regulated kinase [ERK]-1/2), demonstrated an increased level of phosphorylated ERK1/2 with increasing CSC concentration. Nuclear localization of phosphorylated ERK1/2 was seen within 30 min of CSC exposure and was inhibited by PD98059. Increased phosphorylation and nuclear translocation of IκB was also seen after CSC exposure. A549 cells transfected with a luciferase reporter plasmid containing a NFκB-inducible promoter sequence and exposed to CSC (0.4 μg/ml) or TNF-α (50 ng/ml) had an increased reporter activity of approximately 2-fold for CSC and 3.5-fold for TNF-α relative to untreated controls. CONCLUSION: The acute phase response of NHBEs to cigarette smoke involves activation of both MAPK and NFκB

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis
    corecore