31 research outputs found

    Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1

    Get PDF
    Complex conformational dynamics are essential for function of the dimeric molecular cha- perone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimer- ization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90

    Mitochondrial Encephalopathy and Transient 3-Methylglutaconic Aciduria in ECHS1 Deficiency: Long-Term Follow-Up

    No full text
    We report the major diagnostic challenge in a female patient with signs and symptoms suggestive of an early-onset mitochondrial encephalopathy. Motor and cognitive development was severely delayed and brain MRI showed signal abnormalities in the putamen and caudate nuclei. Metabolic abnormalities included 3-methylglutaconic aciduria and elevated lactate levels in plasma and cerebrospinal fluid, but were transient. Whole exome sequencing at the age of 25 years finally revealed compound heterozygous mutations c.[229G>C];[563C>T], p.[Glu77Gln];[Ala188Val] in the ECHS1 gene. Activity of short-chain enoyl-CoA hydratase, a mitochondrial enzyme encoded by the ECHS1 gene, was markedly decreased in lymphocytes. Retrospective urine analysis confirms that elevated levels of S-(2-carboxypropyl)cysteamine, S-(2-carboxypropyl)cysteine, and N-acetyl-S-(2-carboxypropyl)cysteine can be a diagnostic clue in the disease spectrum of ECHS1 mutation

    Translational Aspects of Epithelioid Sarcoma: Current Consensus.

    No full text
    Epithelioid sarcoma (EpS) is an ultra-rare malignant soft-tissue cancer mostly affecting adolescents and young adults. EpS often exhibits an unfavorable clinical course with fatal outcome in ∌50% of cases despite aggressive multimodal therapies combining surgery, chemotherapy, and irradiation. EpS is traditionally classified in a more common, less aggressive distal (classic) type and a rarer aggressive proximal type. Both subtypes are characterized by a loss of nuclear INI1 expression, most often following homozygous deletion of its encoding gene, SMARCB1-a core subunit of the SWI/SNF chromatin remodeling complex. In 2020, the EZH2 inhibitor tazemetostat was the first targeted therapy approved for EpS, raising new hopes. Still, the vast majority of patients did not benefit from this drug or relapsed rapidly. Further, other recent therapeutic modalities, including immunotherapy, are only effective in a fraction of patients. Thus, novel strategies, specifically targeted to EpS, are urgently needed. To accelerate translational research on EpS and eventually boost the discovery and development of new diagnostic tools and therapeutic options, a vibrant translational research community has formed in past years and held two international EpS digital expert meetings in 2021 and 2023. This review summarizes our current understanding of EpS from the translational research perspective and points to innovative research directions to address the most pressing questions in the field, as defined by expert consensus and patient advocacy groups

    Effects of salinity and possible interactions with temperature and pH on growth and photosynthesis of Halophila johnsonii Eiseman

    Get PDF
    The effects of salinity, temperature, and pH variations on growth, survival, and photosynthetic rates of the seagrass Halophila johnsonii Eiseman were examined. Growth and survival responses to salinity were characterized by aquarium experiments in which plants were exposed to seven different salinity treatments (0, 10, 20, 30, 40, 50, and 60 psu) during 15 days. Photosynthetic behavior was assessed for short-term salinity exposures (1 or 20 h) by incubation experiments in biological oxygen demand (BOD) bottles and by measuring photosynthesis versus irradiance (PI) responses in an oxygen electrode chamber. In the bottle experiments the possible effects of interactions between salinity and temperature (15, 25, and 35°C) or pH (5, 6, 7, and 8.2) were also examined. Growth and survival of H. johnsonii were significantly affected by salinity, with maximum rates obtained at 30 psu. Salinity also altered the parameters of the PI curves. Light saturated photosynthesis (Pmax) and the photosynthetic efficiency at subsaturating light (α) increased significantly up to an optimum of 40 psu, decreasing again at the highest salinities. Dark respiration rates and compensating irradiance (Ic) showed minimum values at 40 and 50 psu, while light-saturation point (Ik) was maximum at 30–50 psu. An interaction between salinity and temperature was not found although an increase of temperature alone produced an increase in α, Pmax, respiration rates, and Ik. An interaction between salinity and pH was only found in the Pmax response: Pmax increased with pH=5 at 30 psu. In addition, reducing the pH increased α significantly. In the BOD bottles experiment a significant reduction in the dark respiration with decreasing pH was observed, but the opposite trend was observed in the photosynthetic rate. These results suggest that the endemic seagrass H. johnsonii could be negatively affected by hypo- or hypersalinity conditions, although salinity changes did not seem to alter the tolerance of this species to other environmental factors, such as temperature or pH.This research was supported by a grant of the Generalitat Valenciana (CTESPR/2002/59)
    corecore