26 research outputs found
Spatial correlation bias in late-Cenozoic erosion histories derived from thermochronology
International audienceThe potential link between erosion rates at the Earth's surface and changes in global climate has intrigued geoscientists for decades1,2 because such a coupling has implications for the influence of silicate weathering3,4 and organic-carbon burial5 on climate and for the role of Quaternary glaciations in landscape evolution1,6. A global increase in late-Cenozoic erosion rates in response to a cooling, more variable climate has been proposed on the basis of worldwide sedimentation rates7. Other studies have indicated, however, that global erosion rates may have remained steady, suggesting that the reported increases in sediment-accumulation rates are due to preservation biases, depositional hiatuses and varying measurement intervals8-10. More recently, a global compilation of thermochronology data has been used to infer a nearly twofold increase in the erosion rate in mountainous landscapes over late-Cenozoic times6. It has been contended that this result is free of the biases that affect sedimentary records11, although others have argued that it contains biases related to how thermochronological data are averaged12 and to erosion hiatuses in glaciated landscapes13. Here we investigate the 30 locations with reported accelerated erosion during the late Cenozoic6. Our analysis shows that in 23 of these locations, the reported increases are a result of a spatial correlation bias—that is, combining data with disparate exhumation histories, thereby converting spatial erosion-rate variations into temporal increases. In four locations, the increases can be explained by changes in tectonic boundary conditions. In three cases, climatically induced accelerations are recorded, driven by localized glacial valley incision. Our findings suggest that thermochronology data currently have insufficient resolution to assess whether late-Cenozoic climate change affected erosion rates on a global scale. We suggest that a synthesis of local findings that include location-specific information may help to further investigate drivers of global erosion rates
Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment
Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river’s upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records
Recommended from our members
Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation.
Mountain glaciers respond directly to changes in precipitation and temperature, thus their margin extent is a high-sensitivity climate proxy. Here, we present a robust (10)Be chronology for the glacier maximum areal extent of central Spain paleoglaciers dated at 26.1 ± 1.3 ka BP. These glaciers reached their maximum extent several thousand years earlier than those from central Europe due to the increased precipitation within a cold period between 25 to 29 ka BP, as confirmed by a local speleothem record. These paleoclimate conditions impacted the maximum extent of mountain glaciers along the western and central Mediterranean region. The cause and timing of the enhanced precipitation implies a southward shift of the North Atlantic Polar Front followed by storm tracks in response to changes in insolation via orbital parameters modulation. Thus, these mountain paleoglaciers from the Mediterranean region record an ocean-continent climate interaction triggered by external forcing
Extreme decay of meteoric beryllium-10 as a proxy for persistent aridity
The modern Antarctic Dry Valleys are locked in a hyper-arid, polar climate that enables the East Antarctic Ice Sheet (EAIS) to remain stable, frozen to underlying bedrock. The duration of these dry, cold conditions is a critical prerequisite when modeling the long-term mass balance of the EAIS during past warm climates and is best examined using terrestrial paleoclimatic proxies. Unfortunately, deposits containing such proxies are extremely rare and often difficult to date. Here, we apply a unique dating approach to tundra deposits using concentrations of meteoric beryllium-10 ((10)Be) adhered to paleolake sediments from the Friis Hills, central Dry Valleys. We show that lake sediments were emplaced between 14–17.5 My and have remained untouched by meteoric waters since that time. Our results support the notion that the onset of Dry Valleys aridification occurred ~14 My, precluding the possibility of EAIS collapse during Pliocene warming events. Lake fossils indicate that >14 My ago the Dry Valleys hosted a moist tundra that flourished in elevated atmospheric CO(2) (>400 ppm). Thus, Dry Valleys tundra deposits record regional climatic transitions that affect EAIS mass balance, and, in a global paleoclimatic context, these deposits demonstrate how warming induced by 400 ppm CO(2) manifests at high latitudes
Worldwide acceleration of mountain erosion under a cooling climate
Climate influences the erosion processes acting at the Earth’s surface. However, the effect of cooling during the Late Cenozoic era, including the onset of Pliocene–Pleistocene Northern Hemisphere glaciation (about two to three million years ago), on global erosion rates remains unclear1, 2, 3, 4. The uncertainty arises mainly from a lack of consensus on the use of the sedimentary record as a proxy for erosion3, 4 and the difficulty of isolating the respective contributions of tectonics and climate to erosion5, 6, 7. Here we compile 18,000 bedrock thermochronometric ages from around the world and use a formal inversion procedure8 to estimate temporal and spatial variations in erosion rates. This allows for the quantification of erosion for the source areas that ultimately produce the sediment record on a timescale of millions of years. We find that mountain erosion rates have increased since about six million years ago and most rapidly since two million years ago. The increase of erosion rates is observed at all latitudes, but is most pronounced in glaciated mountain ranges, indicating that glacial processes played an important part. Because mountains represent a considerable fraction of the global production of sediments9, our results imply an increase in sediment flux at a global scale that coincides closely with enhanced cooling during the Pliocene and Pleistocene epochs10, 11