561 research outputs found

    Quantifying single nucleotide variant detection sensitivity in exome sequencing

    Get PDF
    BACKGROUND: The targeted capture and sequencing of genomic regions has rapidly demonstrated its utility in genetic studies. Inherent in this technology is considerable heterogeneity of target coverage and this is expected to systematically impact our sensitivity to detect genuine polymorphisms. To fully interpret the polymorphisms identified in a genetic study it is often essential to both detect polymorphisms and to understand where and with what probability real polymorphisms may have been missed. RESULTS: Using down-sampling of 30 deeply sequenced exomes and a set of gold-standard single nucleotide variant (SNV) genotype calls for each sample, we developed an empirical model relating the read depth at a polymorphic site to the probability of calling the correct genotype at that site. We find that measured sensitivity in SNV detection is substantially worse than that predicted from the naive expectation of sampling from a binomial. This calibrated model allows us to produce single nucleotide resolution SNV sensitivity estimates which can be merged to give summary sensitivity measures for any arbitrary partition of the target sequences (nucleotide, exon, gene, pathway, exome). These metrics are directly comparable between platforms and can be combined between samples to give “power estimates” for an entire study. We estimate a local read depth of 13X is required to detect the alleles and genotype of a heterozygous SNV 95% of the time, but only 3X for a homozygous SNV. At a mean on-target read depth of 20X, commonly used for rare disease exome sequencing studies, we predict 5–15% of heterozygous and 1–4% of homozygous SNVs in the targeted regions will be missed. CONCLUSIONS: Non-reference alleles in the heterozygote state have a high chance of being missed when commonly applied read coverage thresholds are used despite the widely held assumption that there is good polymorphism detection at these coverage levels. Such alleles are likely to be of functional importance in population based studies of rare diseases, somatic mutations in cancer and explaining the “missing heritability” of quantitative traits

    Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA

    Get PDF
    The development of second-generation sequencing technologies has greatly benefitted the field of ancient DNA (aDNA). Its application can be further exploited by the use of targeted capture-enrichment methods to overcome restrictions posed by low endogenous and contaminating DNA in ancient samples. We tested the performance of Agilent's SureSelect and Mycroarray's MySelect in-solution capture systems on Illumina sequencing libraries built from ancient maize to identify key factors influencing aDNA capture experiments. High levels of clonality as well as the presence of multiple-copy sequences in the capture targets led to biases in the data regardless of the capture method. Neither method consistently outperformed the other in terms of average target enrichment, and no obvious difference was observed either when two tiling designs were compared. In addition to demonstrating the plausibility of capturing aDNA from ancient plant material, our results also enable us to provide useful recommendations for those planning targeted-sequencing on aDNA

    Distinct Roles for Neuropilin1 and Neuropilin2 during Mouse Corneal Innervation

    Get PDF
    Trigeminal sensory innervation of the cornea is critical for protection and synthesis of neuropeptides required for normal vision. Little is known about axon guidance during mammalian corneal innervation. In contrast to the chick where a pericorneal nerve ring forms via Npn/Sema signaling, mouse corneal axons project directly into the presumptive cornea without initial formation of an analogous nerve ring. Here we show that during development of the mouse cornea, Npn1 is strongly expressed by the trigeminal ganglion whereas Npn2 is expressed at low levels. At the same time Sema3A and Sema3F are expressed in distinct patterns in the ocular tissues. Npn1sema−/− mutant corneas become precociously and aberrantly innervated by nerve bundles that project further into the corneal stroma. In contrast, stromal innervation was not affected in Npn2−/− mutants. The corneal epithelium was prematurely innervated in both Npn1sema−/− and Npn2−/− mutants. These defects were exacerbated in Npn1sema−/−;Npn2−/− double mutants, which in addition showed ectopic innervation of the region between the optic cup and lens vesicle. Collectively, our data show that Sema3A/Npn1 and Sema3F/Npn2 signaling play distinct roles and both are required for proper innervation of the mouse cornea

    Modelling the cost-effectiveness of public awareness campaigns for the early detection of non-small-cell lung cancer

    Get PDF
    Background: Survival rates in lung cancer in England are significantly lower than in many similar countries. A range of Be Clear on Cancer (BCOC) campaigns have been conducted targeting lung cancer and found to improve the proportion of diagnoses at the early stage of disease. This paper considers the cost-effectiveness of such campaigns, evaluating the effect of both the regional and national BCOC campaigns on the stage distribution of non-small-cell lung cancer (NSCLC) at diagnosis. Methods: A natural history model of NSCLC was developed using incidence data, data elicited from clinical experts and model calibration techniques. This structure is used to consider the lifetime cost and quality-adjusted survival implications of the early awareness campaigns. Incremental cost-effectiveness ratios (ICERs) in terms of additional costs per quality-adjusted life-years (QALYs) gained are presented. Two scenario analyses were conducted to investigate the role of changes in the ‘worried-well’ population and the route of diagnosis that might occur as a result of the campaigns. Results: The base-case theoretical model found the regional and national early awareness campaigns to be associated with QALY gains of 289 and 178 QALYs and ICERs of d13 660 and d18 173 per QALY gained, respectively. The scenarios found that increases in the ‘worried-well’ population may impact the cost-effectiveness conclusions. Conclusions: Subject to the available evidence, the analysis suggests that early awareness campaigns in lung cancer have the potential to be cost-effective. However, significant additional research is required to address many of the limitations of this study. In addition, the estimated natural history model presents previously unavailable estimates of the prevalence and rate of disease progression in the undiagnosed population

    Profiling allele-specific gene expression in brains from individuals with autism spectrum disorder reveals preferential minor allele usage.

    Get PDF
    One fundamental but understudied mechanism of gene regulation in disease is allele-specific expression (ASE), the preferential expression of one allele. We leveraged RNA-sequencing data from human brain to assess ASE in autism spectrum disorder (ASD). When ASE is observed in ASD, the allele with lower population frequency (minor allele) is preferentially more highly expressed than the major allele, opposite to the canonical pattern. Importantly, genes showing ASE in ASD are enriched in those downregulated in ASD postmortem brains and in genes harboring de novo mutations in ASD. Two regions, 14q32 and 15q11, containing all known orphan C/D box small nucleolar RNAs (snoRNAs), are particularly enriched in shifts to higher minor allele expression. We demonstrate that this allele shifting enhances snoRNA-targeted splicing changes in ASD-related target genes in idiopathic ASD and 15q11-q13 duplication syndrome. Together, these results implicate allelic imbalance and dysregulation of orphan C/D box snoRNAs in ASD pathogenesis

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    In vitro synergistic cytoreductive effects of zoledronic acid and radiation on breast cancer cells

    Get PDF
    INTRODUCTION: Bisphosphonates are mostly used in the treatment of bone metastases. They have been shown to act synergistically with other chemotherapeutic agents. It is not known, however, whether similar synergistic effects exist with radiation on breast cancer cells. METHODS: Human MCF-7 breast cancer cells were treated with up to 100 ÎźM zoledronic acid, were irradiated with up to 800 cGy or were exposed to combinations of both treatments to determine the antiproliferative effects of zoledronic acid and radiation. RESULTS: Zoledronic acid and radiation caused a dose-dependent and time-dependent decrease in cell viability (approximate 50% growth inhibition values were 48 ÎźM and 20 ÎźM for 24 hours and 72 hours, respectively, for zoledronic acid and 500 cGy for radiation). A synergistic cytotoxic effect of the combination of zoledronic acid and radiation was confirmed by isobologram analysis. CONCLUSION: These data constitute the first in vitro evidence for synergistic effects between zoledronic acid and radiation. This combination therapy might thus be expected to be more effective than either treatment alone in patients with metastatic breast carcinoma

    Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients

    Get PDF
    Background: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. Methods and Findings: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01). We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p = 0.0197) or anorexic patients (p = 0.0332). The M. smithii concentration was much higher in anorexic patients than in the lean population (p = 0.0171). Conclusions: Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population

    Activation of 2′ 5′-oligoadenylate synthetase by stem loops at the 5′-end of the West Nile virus genome

    Get PDF
    West Nile virus (WNV) has a positive sense RNA genome with conserved structural elements in the 5′ and 3′ -untranslated regions required for polyprotein production. Antiviral immunity to WNV is partially mediated through the production of a cluster of proteins known as the interferon stimulated genes (ISGs). The 2′ 5′-oligoadenylate synthetases (OAS) are key ISGs that help to amplify the innate immune response. Upon interaction with viral double stranded RNA, OAS enzymes become activated and enable the host cell to restrict viral propagation. Studies have linked mutations in the OAS1 gene to increased susceptibility to WNV infection, highlighting the importance of OAS1 enzyme. Here we report that the region at the 5′-end of the WNV genome comprising both the 5′-UTR and initial coding region is capable of OAS1 activation in vitro. This region contains three RNA stem loops (SLI, SLII, and SLIII) whose relative contribution to OAS1 binding affinity and activation were investigated using electrophoretic mobility shift assays and enzyme kinetics experiments. Stem loop I, comprising nucleotides 1-73, is dispensable for maximum OAS1 activation, as a construct containing only SLII and SLIII was capable of enzymatic activation. Mutations to the RNA binding site of OAS1 confirmed the specificity of the interaction. The purity, monodispersity and homogeneity of the 5′-end (SLI/II/III) and OAS1 were evaluated using dynamic light scattering and analytical ultra-centrifugation. Solution conformations of both the 5′-end RNA of WNV and OAS1 were then elucidated using small-angle x-ray scattering. In the context of purified components in vitro, these data demonstrate the recognition of conserved secondary structural elements of the WNV genome by a member of the interferon-mediated innate immune response
    • …
    corecore