125 research outputs found

    Repeatability of IVIM biomarkers from diffusion-weighted MRI in head and neck:Bayesian probability versus neural network

    Get PDF
    Purpose: The intravoxel incoherent motion (IVIM) model for DWI might provide useful biomarkers for disease management in head and neck cancer. This study compared the repeatability of three IVIM fitting methods to the conventional nonlinear least-squares regression: Bayesian probability estimation, a recently introduced neural network approach, IVIM-NET, and a version of the neural network modified to increase consistency, IVIM-NETmod. Methods: Ten healthy volunteers underwent two imaging sessions of the neck, two weeks apart, with two DWI acquisitions per session. Model parameters (ADC, diffusion coefficient (Formula presented.), perfusion fraction (Formula presented.), and pseudo-diffusion coefficient (Formula presented.)) from each fit method were determined in the tonsils and in the pterygoid muscles. Within-subject coefficients of variation (wCV) were calculated to assess repeatability. Training of the neural network was repeated 100 times with random initialization to investigate consistency, quantified by the coefficient of variance. Results: The Bayesian and neural network approaches outperformed nonlinear regression in terms of wCV. Intersession wCV of (Formula presented.) in the tonsils was 23.4% for nonlinear regression, 9.7% for Bayesian estimation, 9.4% for IVIM-NET, and 11.2% for IVIM-NETmod. However, results from repeated training of the neural network on the same data set showed differences in parameter estimates: The coefficient of variances over the 100 repetitions for IVIM-NET were 15% for both (Formula presented.) and (Formula presented.), and 94% for (Formula presented.); for IVIM-NETmod, these values improved to 5%, 9%, and 62%, respectively. Conclusion: Repeatabilities from the Bayesian and neural network approaches are superior to that of nonlinear regression for estimating IVIM parameters in the head and neck

    Daphnia revisited: Local stability and bifurcation theory for physiologically structured population models explained by way of an example

    Get PDF
    We consider the interaction between a general size-structured consumer population and an unstructured resource. We show that stability properties and bifurcation phenomena can be understood in terms of solutions of a system of two delay equations (a renewal equation for the consumer population birth rate coupled to a delay differetial equation for the resource concentration). As many results for such systems are available, we can draw rigorous conclusions concerning dynamical behaviour from an analysis of a characteristic equation. We derive the characteristic equation for a fairly general class of population models, including those based on the Kooijman-Metz Daphnia model and a model introduced by Gurney-Nisbet and Jones et al., and next obtain various ecological insights by analytical or numerical studies of special cases

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans

    Centre of pressure characteristics in normal, planus and cavus feet

    Get PDF
    Background The aim of this study was to compare centre of pressure (COP) characteristics between healthy adults with normal, planus or cavus feet who were allocated to groups based on reliable foot posture measurement techniques. Methods Ninety-two healthy adult participants (aged 18 to 45) were recruited and classified as either normal (nā€‰=ā€‰35), pes planus (nā€‰=ā€‰31) or pes cavus (nā€‰=ā€‰26) based on Foot Posture Index, Arch Index and normalised navicular height truncated measurements. Barefoot walking trials were conducted using an emedĀ®-xā€‰400 plantar pressure system (Novel GmbH, Munich, Germany). Average, maximum, minimum and range (difference between maximum and minimum) values were calculated for COP velocity and lateral-medial force index during loading response, midstance, terminal stance and pre-swing phases of stance. The COP excursion index was also calculated. One-way analyses of variance were used to compare the three foot posture groups. Results The cavus foot exhibited the slowest average and minimum COP velocity during terminal stance, but this pattern was reversed during pre-swing, when the cavus foot exhibited the fastest maximum COP velocity. The planus foot exhibited the smallest lateral medial force index range during terminal stance. There were no differences between the groups for COP excursion index. Conclusion These findings indicate that there are differences in COP characteristics between foot postures, which may represent different mechanisms for generating force to facilitate forward progression of the body during the propulsive phases of gait

    The reliability of plantar pressure assessment during barefoot level walking in children aged 7-11 years

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plantar pressure assessment can provide information pertaining to the dynamic loading of the foot, as well as information specific to each region in contact with the ground. There have been few studies which have considered the reliability of plantar pressure data and therefore the purpose of this study was to investigate the reliability of assessing plantar pressure variables in a group of typically developing children, during barefoot level walking.</p> <p>Methods</p> <p>Forty-five participants, aged 7 to 11 years, were recruited from local primary and secondary schools in East London. Data from three walking trials were collected at both an initial and re-test session, taken one week apart, to determine both the within- and between-session reliability of selected plantar pressure variables. The variables of peak pressure, peak force, pressure-time and force-time integrals were extracted for analysis in the following seven regions of the foot; lateral heel, medial heel, midfoot, 1st metatarsophalangeal joint, 2nd-5th metatarsophalangeal joint, hallux and the lesser toes. Reliability of the data were explored using Intra Class Correlation Coefficients (ICC 3,1 and 3,2) and variability with Coefficients of Variation (CoV's).</p> <p>Results</p> <p>The measurements demonstrated moderate to good levels of within-session reliability across all segments of the foot (0.69-0.93), except the lesser toes, which demonstrated poor reliability (0.17-0.50). CoV's across the three repeated trials ranged from 10.12-19.84% for each of the measured variables across all regions of the foot, except the lesser toes which demonstrated the greatest variability within trials (27.15-56.08%). The between-session results demonstrated good levels of reliability across all foot segments (0.79-0.99) except the lesser toes; with moderate levels of reliability reported at this region of the foot (0.58-0.68). The CoV's between-sessions demonstrated that the midfoot (16.41-36.23%) and lesser toe region (29.64-56.61) demonstrated the greatest levels of variability across all the measured variables.</p> <p>Conclusions</p> <p>These findings indicate that using the reported protocols, reliable plantar pressure data can be collected in children, aged 7 to 11 years in all regions of the foot except the lesser toes which consistently reported poor-to-moderate levels of reliability and increased variability.</p

    Reliability of the TekScan MatScanĀ® system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plantar pressure systems are increasingly being used to evaluate foot function in both research settings and in clinical practice. The purpose of this study was to investigate the reliability of the TekScan MatScan<sup>Ā® </sup>system in assessing plantar forces and pressures during barefoot level walking.</p> <p>Methods</p> <p>Thirty participants were assessed for the reliability of measurements taken one week apart for the variables maximum force, peak pressure and average pressure. The following seven regions of the foot were investigated; heel, midfoot, 3<sup>rd</sup>-5<sup>th </sup>metatarsophalangeal joint, 2<sup>nd </sup>metatarsophalangeal joint, 1<sup>st </sup>metatarsophalangeal joint, hallux and the lesser toes.</p> <p>Results</p> <p>Reliability was assessed using both the mean and the median values of three repeated trials. The system displayed moderate to good reliability of mean and median calculations for the three analysed variables across all seven regions, as indicated by intra-class correlation coefficients ranging from 0.44 to 0.95 for the mean and 0.54 to 0.97 for the median, and coefficients of variation ranging from 5 to 20% for the mean and 3 to 23% for the median. Selecting the median value of three repeated trials yielded slightly more reliable results than the mean.</p> <p>Conclusions</p> <p>These findings indicate that the TekScan MatScan<sup>Ā® </sup>system demonstrates generally moderate to good reliability.</p

    The interactive effects of arbuscular mycorrhiza and plant growth-promoting rhizobacteria synergistically enhance host plant defences against pathogens

    Get PDF
    Belowground interactions between plant roots, mycorrhizal fungi and plant growth-promoting rhizobacteria (PGPR) can improve plant health via enhanced nutrient acquisition and priming of the plant immune system. Two wheat cultivars differing in their ability to form mycorrhiza were (co)inoculated with the mycorrhizal fungus Rhizophagus irregularis and the rhizobacterial strain Pseudomonas putida KT2440. The cultivar with high mycorrhizal compatibility supported higher levels of rhizobacterial colonization than the low compatibility cultivar. Those levels were augmented by mycorrhizal infection. Conversely, rhizobacterial colonization of the low compatibility cultivar was reduced by mycorrhizal arbuscule formation. Single inoculations with R. irregularis or P. putida had differential growth effects on both cultivars. Furthermore, while both cultivars developed systemic priming of chitosan-induced callose after single inoculations with R. irregularis or P. putida, only the cultivar with high mycorrhizal compatibility showed a synergistic increase in callose responsiveness following co-inoculation with both microbes. Our results show that multilateral interactions between roots, mycorrhizal fungi and PGPR can have synergistic effects on growth and systemic priming of wheat
    • ā€¦
    corecore