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1 Introduction
In population dynamics, the classic Nicholson’s blowflies equation developed by Gurney
et al. [] takes the following form:

x′(t) = Px(t – τ )e–αx(t–τ ) – γ x(t),

where x(t) denotes the population of sexually mature adults at time t, P is the maximum
possible per capita egg production rate, /α is the population size at which the whole pop-
ulation reproduces at its maximum rate, τ is the generation time, and the mortality rate γ

is assumed to be a constant. Such an assumption is reasonable for populations at low den-
sities, butmay not be valid anymorewhen the populations are at high densities. A straight-
forward extension thus assumes that the mortality rate is density-dependent, for instance,
Berezansky et al. [] proposed the following Nicholson’s blowflies equation:

x′(t) = –D
(
x(t)

)
+ Px(t – τ )e–x(t–τ ), (.)

where the nonlinear density-dependent mortality function D(x) might have one of the
following forms: D(x) = ax

b+x or D(x) = a – be–x with positive constants a,b > .
Since variable coefficients and delays in differential equations of population and ecology

problems are much more realistic in the real world, (.) has been often generalized as
follows:

x′(t) = –D
(
t,x(t)

)
+ P(t)x(t – τ )e–x(t–τ (t)), (.)
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where coefficients anddelays are time-varyingwithD(t,x) = a(t)x
b(t)+x orD(t,x) = a(t)–b(t)e–x.

Moreover, the dynamic behaviors on the existence of positive solutions, periodic solutions,
persistence, permanence, oscillation and stability of Nicholson’s blowflies model (.) and
its analogous equations have been studied extensively. We refer the reader to [–] and
the references cited therein. On the other hand, the variation of the environment plays
an important role in many biological and ecological dynamical systems. Fink [] and He
[] pointed out that periodically varying environment and almost periodically varying
environment are foundations for the theory of nature selection. Compared with periodic
effects, almost periodic effects are more frequent. Hence, the effects of almost periodic
environment on evolutionary theory have been the object of intensive analysis by numer-
ous authors, and some of these results on Nicholson’s blowflies model without nonlinear
density-dependentmortality term can be found in [–]. In particular, these resultswere
obtained by using exponential dichotomy theory on almost periodic differential equations
or functional differential equations with linear part. However, there is not any linear part
in Nicholson’s blowflies model with a nonlinear density-dependent mortality term. Thus,
many classical and traditional approaches fail to almost periodic problems on (.). There-
fore, a new method must be sought to investigate the existence and stability of positive
almost periodic solutions of (.).
Motivated by the above discussions, in this paper, we employ a novelmethod to establish

some criteria on the existence and global exponential stability of almost periodic solutions
for the nonlinear density-dependent mortality Nicholson’s blowflies model given by

x′(t) = –a(t) + b(t)e–x(t) +
m∑
j=

βj(t)x
(
t – τj(t)

)
e–γj(t)x(t–τj(t)), (.)

where a,b,βj,γj : R → (, +∞) and τj : R → [, +∞) are almost periodic functions, and
j = , , . . . ,m.
For convenience, we introduce some notations. In the following part of this paper, given

a bounded continuous function g defined on R, let g+ and g– be defined as

g+ = sup
t∈R

g(t), g– = inf
t∈R g(t).

It will be assumed that

r = max
≤j≤m

τ+
j , a– > , b– > , β–

j > , γ –
j ≥ , j = , , . . . ,m. (.)

Throughout this paper, let R+ denote a nonnegative real number space, C = C([–r, ],R)
be the continuous functions space equipped with the usual supremum norm ‖ · ‖, and let
C+ = C([–r, ],R+). If x(t) is continuous and defined on [–r + t,σ ) with t,σ ∈ R, then we
define xt ∈ C, where xt(θ ) = x(t + θ ) for all θ ∈ [–r, ].
It is biologically reasonable to assume that only positive solutions of model (.) are

meaningful and therefore admissible. Much can be learned by considering admissible ini-
tial conditions

xt = ϕ, ϕ ∈ C+ and ϕ() > . (.)

http://www.advancesindifferenceequations.com/content/2014/1/72
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Define a continuous map f : R×C+ → R by setting

f (t,ϕ) = –a(t) + b(t)e–ϕ() +
m∑
j=

βj(t)ϕ
(
–τj(t)

)
e–γj(t)ϕ(–τj(t)).

Then f is a locally Lipschitz map with respect to ϕ ∈ C+, which ensures the existence and
uniqueness of the solution of (.) with admissible initial conditions (.).
We denote by xt(t,ϕ)(x(t; t,ϕ)) an admissible solution of admissible initial value prob-

lem (.) and (.). Also, let [t,η(ϕ)) be the maximal right-interval of the existence of
xt(t,ϕ).
Since the function –x

ex is decreasing with the range [, ], it follows easily that there exists
a unique κ ∈ (, ) such that

 – κ

eκ
=


e
. (.)

Obviously,

sup
x≥κ

∣∣∣∣ – x
ex

∣∣∣∣ = 
e
. (.)

Moreover, since xe–x increases on [, ] and decreases on [, +∞), let κ̃ be the unique num-
ber in (, +∞) such that

κe–κ = κ̃e–κ̃ . (.)

The remainder of this paper is organized as follows. In Section , we give some defini-
tions and lemmas, which tell us that some kinds of solutions to (.) are bounded. These
results play an important role in Section  to establish the existence of almost periodic
solutions of (.). Here we also study the local exponential stability of almost periodic so-
lutions. The paper concludeswith an example to illustrate the effectiveness of the obtained
results by numerical simulation.

2 Preliminary results
In this section, we shall first recall some basic definitions, lemmas which are used in what
follows.

Definition . (see [, ]) A continuous function u : R → R is said to be almost periodic
on R if, for any ε > , the set T(u, ε) = {δ : |u(t + δ) – u(t)| < ε for all t ∈ R} is relatively
dense, i.e., for any ε > , it is possible to find a real number l = l(ε) >  with the property
that, for any interval with length l(ε), there exists a number δ = δ(ε) in this interval such
that |u(t + δ) – u(t)| < ε for all t ∈ R.

From the theory of almost periodic functions in [, ], it follows that for any ε > , it
is possible to find a real number l = l(ε) > ; for any interval with length l(ε), there exists a
number δ = δ(ε) in this interval such that{

|a(t + δ) – a(t)| < ε, |b(t + δ) – b(t)| < ε, |βj(t + δ) – βj(t)| < ε,
|τj(t + δ) – τj(t)| < ε, |γj(t + δ) – γj(t)| < ε

(.)

for all t ∈ R and j = , , . . . ,m.

http://www.advancesindifferenceequations.com/content/2014/1/72
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Lemma . Suppose that there exists a positive constant M such that

γ +
j ≤ κ̃

M
, j = , , . . . ,m, (.)

supt∈R{–a(t) + b(t)e–M +
∑m

j=
βj(t)
γj(t)


e } < ,

inft∈R,s∈[,κ]{–a(t) + b(t)e–s +
∑m

j=
βj(t)
γj(t)

se–s} > .

⎫⎬
⎭ (.)

Then the set of {xt(t,ϕ) : t ∈ [t,η(ϕ))} is bounded, and η(ϕ) = +∞.Moreover, there exists
tϕ > t such that

κ < x(t; t,ϕ) <M for all t ≥ tϕ . (.)

Proof Let x(t) = x(t; t,ϕ). We first claim:

x(t) >  for all t ∈ [
t,η(ϕ)

)
. (.)

Suppose, for the sake of contradiction, that there exists t̄ ∈ (t,η(ϕ)) such that

x(t̄) = , x(t) >  for all t ∈ [t, t̄).

It follows that x′(t̄) ≤ . But

x′(t̄) = –a(t̄) + b(t̄)e–x(t̄) +
m∑
j=

βj(t̄)x
(
t̄ – τj(t̄)

)
e–γj(t̄)x(t̄–τj(t̄))

≥ –a(t̄) + b(t̄)≥ inf
t∈R,s∈[,κ]

{
–a(t) + b(t)e–s +

m∑
j=

βj(t)
γj(t)

se–s
}

> .

This contradiction means that x(t) >  for all t ∈ [t,η(ϕ)).
For each t ∈ [t – r,η(ϕ)), we define

M(t) =max
{
ξ : ξ ≤ t,x(ξ ) = max

t–r≤s≤t
x(s)

}
.

We now show that x(t) is bounded on [t,η(ϕ)). In the contrary case, observe thatM(t) →
η(ϕ) as t → η(ϕ), we have

lim
t→η(ϕ)

x
(
M(t)

)
= +∞. (.)

On the other hand,

x
(
M(t)

)
= max

t–r≤s≤t
x(s) and so x′(M(t)

) ≥ , whereM(t) > t.

Thus, in view of the fact that supu≥ ue–u = 
e , we get

 ≤ x′(M(t)
)

= –a
(
M(t)

)
+ b

(
M(t)

)
e–x(M(t))

http://www.advancesindifferenceequations.com/content/2014/1/72
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+
m∑
j=

βj(M(t))
γj(M(t))

γj
(
M(t)

)
x
(
M(t) – τj

(
M(t)

))
e–γj(M(t))x(M(t)–τj(M(t)))

≤ –a
(
M(t)

)
+ b

(
M(t)

)
e–x(M(t)) +

m∑
j=

βj(M(t))
γj(M(t))


e
, whereM(t) > t.

Letting t → η(ϕ) leads to

 ≤ lim
t→η(ϕ)

[
–a(t) +

m∑
j=

βj(t)
γj(t)


e

]
≤ sup

t∈R

{
–a(t) + b(t)e–M +

m∑
j=

βj(t)
γj(t)


e

}
< ,

which is a contradiction and implies that x(t) is bounded on [t,η(ϕ)). FromTheorem ..
in [], we easily obtain η(ϕ) = +∞.
We next show that there exists t# ∈ [t, +∞) such that

x
(
t#

)
<M. (.)

Otherwise,

x(t)≥M for all t ∈ [t, +∞),

which together with (.) implies that

x′(t) = –a(t) + b(t)e–x(t) +
m∑
j=

βj(t)
γj(t)

γj(t)x
(
t – τj(t)

)
e–γj(t)x(t–τj(t))

≤ –a(t) + b(t)e–M +
m∑
j=

βj(t)
γj(t)


e

<  for all t ≥ t.

This yields that

x(t) = x(t) +
∫ t

t
x′(s)ds

≤ x(t) + sup
t∈R

{
–a(t) + b(t)e–M +

m∑
j=

βj(t)
γj(t)


e

}
(t – t), ∀t ≥ t.

Thus

lim
t→+∞x(t) = –∞,

which contradicts with (.). Hence, (.) holds. In the sequel, we prove that

x(t) <M for all t ∈ [
t#, +∞)

. (.)

Suppose, for the sake of contradiction, that there exists t̃ ∈ (t#, +∞) such that

x(t̃) =M, x(t) <M for all t ∈ [
t#, t̃

)
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/72
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Calculating the derivative of x(t), together with the fact that supx∈R xe–x = 
e , (.), (.) and

(.) imply that

 ≤ x′(t̃)

= –a(t̃) + b(t̃)e–x(t̃) +
m∑
j=

βj(t̃)
γj(t̃)

γj(t̃)x
(
t̃ – τj(t̃)

)
e–γj(t̃)x(t̃–τj(t̃))

≤ –a(t̃) + b(t̃)e–M +
m∑
j=

βj(t̃)
γj(t̃)


e

< .

This contradiction yields that (.) holds.
We finally show that l = lim inft→∞ x(t) > κ . By way of contradiction, we assume that

 ≤ l ≤ κ . By the fluctuation lemma [, Lemma A.], there exists a sequence {tk}k≥ such
that

tk → +∞, x(tk)→ lim inf
t→∞ x(t), x′(tk)→  as k → +∞.

Since {xtk } is bounded and equicontinuous, by the Ascoli-Arzelá theorem, there exists a
subsequence, still denoted by itself for simplicity of notation, such that

xtk → ϕ∗ for some ϕ∗ ∈ C+.

Moreover,

ϕ∗() = l ≤ ϕ∗(θ )≤M for θ ∈ [–r, ).

Without loss of generality, we assume that all a(tk), b(tk), βj(tk), τj(tk) and γj(tk) are con-
vergent to a∗, b∗, β∗

j , τ ∗
j and γ ∗

j , respectively. This can be achieved because of almost
periodicity. Then (.) and (.) lead to

l ≤ γ ∗
j ϕ∗(–τ ∗

j
) ≤ γ ∗

j M ≤ κ̃ , j = , , . . . ,m.

It follows from

x′(tk) = –a(tk) + b(tk)e–x(tk ) +
m∑
j=

βj(tk)
γj(tk)

γj(tk)x
(
tk – τj(tk)

)
e–γj(tk )x(tk–τj(tk ))

that (taking limits)

 = –a∗ + b∗e–l +
m∑
j=

β∗
j

γ ∗
j

γ ∗
j ϕ∗(–τ ∗

j
)
e–γ ∗

j ϕ∗(–τ∗
j )

≥ –a∗ + b∗e–l +
m∑
j=

β∗
j

γ ∗
j
le–l

http://www.advancesindifferenceequations.com/content/2014/1/72
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≥ inf
t∈R,s∈[,κ]

{
–a(t) + b(t)e–s +

m∑
j=

βj(t)
γj(t)

se–s
}

> ,

a contradiction. This proves that l > κ . Hence, from (.), we can choose tϕ > t such that

κ < x(t; t,ϕ) <M for all t ≥ tϕ .

This ends the proof of Lemma .. �

Lemma . Suppose that (.) and (.) hold, and

sup
t∈R

{
–b(t)e–M +


e

m∑
j=

βj(t)

}
< . (.)

Moreover, assume that x(t) = x(t; t,ϕ) is a solution of equation (.) with the initial con-
dition (.) and ϕ′ is bounded continuous on [–r, ]. Then, for any ε > , there exists
l = l(ε) >  such that every interval [α,α + l] contains at least one number δ for which there
exists N >  satisfying

∣∣x(t + δ) – x(t)
∣∣ ≤ ε for all t >N . (.)

Proof Define a continuous function �(u) by setting

�(u) = sup
t∈R

{
–
[
b(t)e–M – u

]
+

m∑
j=

βj(t)

e
eur

}
, u ∈ [, ]. (.)

Then we have

�() = sup
t∈R

{
–b(t)e–M +

m∑
j=

βj(t)

e

}
< ,

which implies that there exist two constants η >  and λ ∈ (, ] such that

�(λ) = sup
t∈R

{
–
[
b(t)e–M – λ

]
+

m∑
j=

βj(t)

e
eλr

}
< –η < . (.)

For t ∈ (–∞, t – r], we add the definition of x(t) with x(t)≡ x(t – r). Set

ε(δ, t) =
[
b(t + δ) – b(t)

]
e–x(t+δ)

+
m∑
j=

[
βj(t + δ) – βj(t)

]
x
(
t + δ – τj(t + δ)

)
e–γj(t+δ)x(t+δ–τj(t+δ))

+
m∑
j=

βj(t)
[
x
(
t + δ – τj(t + δ)

)
e–γj(t+δ)x(t+δ–τj(t+δ))

– x
(
t – τj(t) + δ

)
e–γj(t+δ)x(t–τj(t)+δ)]

http://www.advancesindifferenceequations.com/content/2014/1/72
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+
m∑
j=

βj(t)
[
x
(
t – τj(t) + δ

)
e–γj(t+δ)x(t–τj(t)+δ) – x

(
t – τj(t) + δ

)
e–γj(t)x(t–τj(t)+δ)]

–
[
a(t + δ) – a(t)

]
, t ∈ R. (.)

By Lemma ., the solution x(t) is bounded and

κ < x(t) <M for all t ≥ tϕ , (.)

which implies that the right-hand side of (.) is also bounded, and x′(t) is a bounded
function on [t – r, +∞). Thus, in view of the fact that x(t) ≡ x(t – r) for t ∈ (–∞, t – r],
we obtain that x(t) is uniformly continuous on R. From (.), for any ε > , there exists
l = l(ε) >  such that every interval [α,α + l], α ∈ R, contains δ for which

∣∣ε(δ, t)∣∣ ≤ 

ηε for all t ∈ R. (.)

Let N ≥max{t, t – δ, tϕ + r, tϕ + r – δ}. For t ∈ R, denote

u(t) = x(t + δ) – x(t).

Then, for all t ≥N, we get

du(t)
dt

= b(t)
[
e–x(t+δ) – e–x(t)

]

+
m∑
j=

βj(t)
[
x
(
t – τj(t) + δ

)
e–γj(t)x(t–τj(t)+δ) – x

(
t – τj(t)

)
e–γj(t)x(t–τj(t))

]
+ ε(δ, t). (.)

From (.), (.), (.) and the inequalities

(
e–s – e–t

)
sgn(s – t) = –e–(s+θ (t–s))|s – t|

≤ –e–M|s – t|, where s, t ∈ [κ ,M],  < θ <  (.)

and

∣∣se–s – te–t
∣∣ = ∣∣∣∣ – (s + θ (t – s))

es+θ (t–s)

∣∣∣∣|s – t|

≤ 
e

|s – t|, where s, t ∈ [κ , +∞),  < θ < , (.)

we obtain

D–(eλs∣∣u(s)∣∣)|s=t
≤ λeλt∣∣u(t)∣∣ + eλt

{
b(t)

[
e–x(t+δ) – e–x(t)

]
sgn

(
x(t + δ) – x(t)

)

+

∣∣∣∣∣
m∑
j=

βj(t)
[
x
(
t – τj(t) + δ

)
e–γj(t)x(t–τj(t)+δ) – x

(
t – τj(t)

)
e–γj(t)x(t–τj(t))

]
+ ε(δ, t)

∣∣∣∣∣
}

http://www.advancesindifferenceequations.com/content/2014/1/72
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= λeλt∣∣u(t)∣∣ + eλt

{
b(t)

[
e–x(t+δ) – e–x(t)

]
sgn

(
x(t + δ) – x(t)

)

+

∣∣∣∣∣
m∑
j=

βj(t)
γj(t)

[
γj(t)x

(
t – τj(t) + δ

)
e–γj(t)x(t–τj(t)+δ) – γj(t)x

(
t – τj(t)

)
e–γj(t)x(t–τj(t))

]

+ ε(δ, t)

∣∣∣∣∣
}

≤ λeλt∣∣u(t)∣∣ + eλt

{
–b(t)e–M

∣∣u(t)∣∣ + m∑
j=

βj(t)

e

∣∣u(
t – τj(t)

)∣∣ + ∣∣ε(δ, t)∣∣
}

= –
[
b(t)e–M – λ

]
eλt∣∣u(t)∣∣

+
m∑
j=

βj(t)

e
eλτj(t)eλ(t–τj(t))

∣∣u(
t – τj(t)

)∣∣
+ eλt∣∣ε(δ, t)∣∣ for all t ≥N. (.)

Let

U(t) = sup
–∞<s≤t

{
eλs∣∣u(s)∣∣}. (.)

It is obvious that eλt|u(t)| ≤U(t) and U(t) is non-decreasing.
Now, we distinguish two cases to finish the proof.
Case one.

U(t) > eλt∣∣u(t)∣∣ for all t ≥N. (.)

We claim that

U(t)≡U(N) is a constant for all t ≥N. (.)

Assume, by way of contradiction, that (.) does not hold. Then there exists t >N such
that U(t) >U(N). Since

eλt∣∣u(t)∣∣ ≤U(N) for all t ≤N,

there must exist β ∈ (N, t) such that

eλβ
∣∣u(β)∣∣ =U(t)≥U(β),

which contradicts (.). This contradiction implies that (.) holds. It follows that there
exists t >N such that

∣∣u(t)∣∣ ≤ e–λtU(t) = e–λtU(N) < ε for all t ≥ t. (.)

http://www.advancesindifferenceequations.com/content/2014/1/72
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Case two. There is t∗ ≥N such thatU(t∗) = eλt∗ |u(t∗)|. Then, in viewof (.) and (.),
we get

 ≤ D–(eλs∣∣u(s)∣∣)|s=t∗
≤ –

[
b
(
t∗

)
e–M – λ

]
eλt∗

∣∣u(
t∗

)∣∣
+

m∑
j=

βj
(
t∗

) 
e
eλτj(t∗)eλ(t∗–τj(t∗))

∣∣u(
t∗ – τj

(
t∗

))∣∣ + eλt∗
∣∣ε(δ, t∗)∣∣

≤
{
–
[
b
(
t∗

)
e–M – λ

]
+

m∑
j=

βj
(
t∗

) 
e
eλr

}
U

(
t∗

)
+


ηεeλt∗

< –ηU
(
t∗

)
+ ηεeλt∗ , (.)

which yields that

eλt∗
∣∣u(

t∗
)∣∣ =U

(
t∗

)
< εeλt∗ and

∣∣u(
t∗

)∣∣ < ε. (.)

For any t > t∗, with the same approach as that in deriving of (.), we can show

eλt∣∣u(t)∣∣ < εeλt and
∣∣u(t)∣∣ < ε (.)

if U(t) = eλt|u(t)|.
On the other hand, if U(t) > eλt|u(t)| and t > t∗, we can choose t∗ ≤ t < t such that

U(t) = eλt
∣∣u(t)∣∣ and U(s) > eλs∣∣u(s)∣∣ for all s ∈ (t, t],

which, together with (.), yields

∣∣u(t)∣∣ < ε.

With a similar argument as that in the proof of case one, we can show that

U(s)≡U(t) is a constant for all s ∈ (t, t], (.)

which implies that

∣∣u(t)∣∣ < e–λtU(t) = e–λtU(t) =
∣∣u(t)∣∣e–λ(t–t) < ε.

In summary, there must exist N >max{t∗,N, t} such that |u(t)| ≤ ε holds for all t >N .
The proof of Lemma . is now complete. �

3 Main results
In this section, we establish sufficient conditions on the existence and global exponential
stability of almost periodic solutions of (.).

Theorem. Under the assumptions of Lemma ., equation (.) has at least one positive
almost periodic solution x∗(t). Moreover, x∗(t) is globally exponentially stable, i.e., there

http://www.advancesindifferenceequations.com/content/2014/1/72


Liu Advances in Difference Equations 2014, 2014:72 Page 11 of 16
http://www.advancesindifferenceequations.com/content/2014/1/72

exist constants Kϕ,x∗ and tϕ,x∗ such that

∣∣x(t; t,ϕ) – x∗(t)
∣∣ < Kϕ,x∗e–λt for all t > tϕ,x∗ .

Proof Let v(t) = v(t; t,ϕv) be a solution of equation (.) with initial conditions satisfying
the assumptions in Lemma .. We also add the definition of v(t) with v(t) ≡ v(t – r) for
all t ∈ (–∞, t – r]. Set

ε(k, t) =
[
b(t + tk) – b(t)

]
e–v(t+tk )

+
m∑
j=

[
βj(t + tk) – βj(t)

]
v
(
t + tk – τj(t + tk)

)
e–γj(t+tk )v(t+tk–τj(t+tk ))

+
m∑
j=

βj(t)
[
v
(
t + tk – τj(t + tk)

)
e–γj(t+tk )v(t+tk–τj(t+tk ))

– v
(
t – τj(t) + tk

)
e–γj(t+tk )v(t–τj(t)+tk )

]
+

m∑
j=

βj(t)
[
v
(
t – τj(t) + tk

)
e–γj(t+tk )v(t–τj(t)+tk )

– v
(
t – τj(t) + tk

)
e–γj(t)v(t–τj(t)+tk )

]
–

[
a(t + tk) – a(t)

]
, t ∈ R, (.)

where {tk} is any sequence of real numbers. By Lemma ., the solution v(t) is bounded
and

κ < v(t) <M for all t ≥ tϕv , (.)

which implies that the right-hand side of (.) is also bounded, and v′(t) is a bounded
function on [t – r, +∞). Thus, in view of the fact that v(t) ≡ v(t – r) for t ∈ (–∞, t – r],
we obtain that v(t) is uniformly continuous on R. Then, from the almost periodicity of a,
b, τj, γj and βj, we can select a sequence {tk} → +∞ such that

|a(t + tk) – a(t)| ≤ 
k , |b(t + tk) – b(t)| ≤ 

k , |τj(t + tk) – τj(t)| ≤ 
k ,

|βj(t + tk) – βj(t)| ≤ 
k , |γj(t + tk) – γj(t)| ≤ 

k , |ε(k, t)| ≤ 
k

}
(.)

for all j, t.
Since {v(t + tk)}+∞

k= is uniformly bounded and equiuniformly continuous, by the Arzelá-
Ascoli lemma and the diagonal selection principle, we can choose a subsequence {tkj} of
{tk} such that v(t + tkj ) (for convenience, we still denote it by v(t + tk)) uniformly converges
to a continuous function x∗(t) on any compact set of R, and

κ ≤ x∗(t) ≤M for all t ∈ R. (.)

Now, we prove that x∗(t) is a solution of (.). In fact, for any t ≥ t and �t ∈ R, from
(.), we have

x∗(t +�t) – x∗(t)

= lim
k→+∞

[
v(t +�t + tk) – v(t + tk)

]

http://www.advancesindifferenceequations.com/content/2014/1/72
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= lim
k→+∞

∫ t+�t

t

{
–a(μ + tk) + b(μ + tk)e–v(μ+tk )

+
m∑
j=

βj(μ + tk)v
(
μ + tk – τj(μ + tk)

)
e–γj(μ+tk )v(μ+tk–τj(μ+tk ))

}
dμ

= lim
k→+∞

∫ t+�t

t

{
–a(μ) + b(μ)e–v(μ+tk )

+
m∑
j=

βj(μ)v
(
μ + tk – τj(μ)

)
e–γj(μ)v(μ+tk–τj(μ)) + ε(k,μ)

}
dμ

=
∫ t+�t

t

{
–a(μ) + b(μ)e–x∗(μ)

+
m∑
j=

βj(μ)x∗(μ – τj(μ)
)
e–γj(μ)x∗(μ–τj(μ))

}
dμ + lim

k→+∞

∫ t+�t

t
ε(k,μ)dμ

=
∫ t+�t

t

{
–a(μ) + b(μ)e–x∗(μ) +

m∑
j=

βj(μ)x∗(μ – τj(μ)
)
e–γj(μ)x∗(μ–τj(μ))

}
dμ, (.)

where t +�t ≥ t. Consequently, (.) implies that

d
dt

{
x∗(t)

}
= –a(t) + b(t)e–x

∗(t) +
m∑
j=

βj(t)x∗(t – τj(t)
)
e–γj(t)x∗(t–τj(t)). (.)

Therefore, x∗(t) is a solution of (.).
Secondly, we prove that x∗(t) is an almost periodic solution of (.). From Lemma .,

for any ε > , there exists l = l(ε) >  such that every interval [α,α + l] contains at least one
number δ for which there exists N >  satisfying

∣∣v(t + δ) – v(t)
∣∣ ≤ ε for all t >N . (.)

Then, for any fixed s ∈ R, we can find a sufficient large positive integer N > N such that
for any k >N,

s + tk >N ,
∣∣v(s + tk + δ) – v(s + tk)

∣∣ ≤ ε. (.)

Let k → +∞, we obtain

∣∣x∗(s + δ) – x∗(s)
∣∣ ≤ ε,

which implies that x∗(t) is an almost periodic solution of equation (.).
Finally, we prove that x∗(t) is globally exponentially stable.
Let x(t) = x(t; t,ϕ) and y(t) = x(t) – x∗(t), where t ∈ [t – r, +∞). Then

y′(t) = b(t)
[
e–x(t) – e–x

∗(t)]
+

m∑
j=

βj(t)
[
x
(
t – τj(t)

)
e–γj(t)x(t–τj(t)) – x∗(t – τj(t)

)
e–γj(t)x∗(t–τj(t))

]
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/72
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It follows from Lemma . that there exists tϕ,x∗ > t such that

κ ≤ x(t), x∗(t) ≤M for all t ∈ [tϕ,x∗ – r, +∞). (.)

We consider the Lyapunov functional

V (t) =
∣∣y(t)∣∣eλt . (.)

Calculating the upper left derivative of V (t) along the solution y(t) of (.), we have

D–(V (t)
) ≤ b(t)

[
e–x(t) – e–x

∗(t)] sgn(x(t) – x∗(t)
)
eλt

+
m∑
j=

βj(t)
∣∣x(t – τj(t)

)
e–γj(t)x(t–τj(t))

– x∗(t – τj(t)
)
e–γj(t)x∗(t–τj(t))

∣∣eλt + λ
∣∣y(t)∣∣eλt for all t > tϕ,ϕ∗ . (.)

We claim that

V (t) =
∣∣y(t)∣∣eλt

< eλtϕ,x∗
(

max
t∈[t–r,tϕ,x∗ ]

∣∣x(t) – x∗(t)
∣∣ + 

)
:= Kϕ,x∗ for all t > tϕ,x∗ . (.)

Contrarily, there must exist t∗ > tϕ,x∗ such that

V (t∗) = Kϕ,x∗ and V (t) < Kϕ,x∗ for all t ∈ [t – r, t∗). (.)

Since

κ ≤ γj(t∗)x
(
t∗ – τj(t∗)

)
, γj(t∗)x∗(t∗ – τj(t∗)

) ≤ γ +
j M ≤ κ̃ , j = , , . . . ,m.

Together with (.), (.), (.) and (.), we obtain

 ≤ D–(V (t∗)
)

≤ b(t∗)
[
e–x(t∗) – e–x

∗(t∗)] sgn(x(t∗) – x∗(t∗)
)
eλt∗

+
m∑
j=

βj(t∗)
∣∣x(t∗ – τj(t∗)

)
e–γj(t∗)x(t∗–τj(t∗))

– x∗(t∗ – τj(t∗)
)
e–γj(t∗)x∗(t∗–τj(t∗))

∣∣eλt∗ + λ
∣∣y(t∗)∣∣eλt∗

≤ –b(t∗)e–M
∣∣y(t∗)∣∣eλt∗ +

m∑
j=

βj(t∗)
∣∣x(t∗ – τj(t∗)

)
e–γj(t∗)x(t∗–τj(t∗))

– x∗(t∗ – τj(t∗)
)
e–γj(t∗)x∗(t∗–τj(t∗))

∣∣eλt∗ + λ
∣∣y(t∗)∣∣eλt∗

= –
[
b(t∗)e–M – λ

]∣∣y(t∗)∣∣eλt∗ +
m∑
j=

βj(t∗)
γj(t∗)

∣∣γj(t∗)x(t∗ – τj(t∗)
)
e–γj(t∗)x(t∗–τj(t∗))

http://www.advancesindifferenceequations.com/content/2014/1/72
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– γj(t∗)x∗(t∗ – τj(t∗)
)
e–γj(t∗)x∗(t∗–τj(t∗))

∣∣eλt∗

≤ –
[
b(t∗)e–M – λ

]∣∣y(t∗)∣∣eλt∗ +
m∑
j=

βj(t∗)

e

∣∣y(t∗ – τj(t∗)
)∣∣eλ(t∗–τj(t∗))eλτj(t∗)

≤
{
–
[
b(t∗)e–M – λ

]
+

m∑
j=

βj(t∗)

e
eλr

}
Kϕ,x∗ .

Thus,

 ≤ –
[
b(t∗)e–M – λ

]
+

m∑
j=

βj(t∗)

e
eλr ,

which contradicts with (.). Hence, (.) holds. It follows that

∣∣y(t)∣∣ < Kϕ,x∗e–λt for all t > tϕ,x∗ .

This completes the proof of Theorem .. �

4 Example
In this section, we present an example and its numerical simulation to check the validity
of results we obtained in the previous sections.

Example . Consider the following Nicholson’s blowflies model with a nonlinear
density-dependent mortality term:

x′(t) = –e–(+. cos
√
t) + ( + . cos

√
t)e–x(t)

+
 + cos t
,

x
(
t – esin t

)
e–x(t–e

sin t )

+
 + cos t
,

x
(
t – ecos

 t)e–x(t–ecos t ). (.)

Obviously, r = e, a– = e–., a+ = e–, b– = ., b+ = ., β–
j = ., β+

j = .,
γ –
j = γ +

j = , j = , . LetM = ., from (.) and (.), we get

κ ≈ ., κ̃ ≈ .,

a– = e–. > .e–. + × .
e

= b+e–M +
∑
j=

β+
j

eγ –
j
,

a+ = e– ≈ . < b–e–κ = .e–κ ≈ .e–. ≈ .

and

b–e–M = .e–. ≈ . >

e

m∑
j=

β+
j = .e– ≈ . for all t ∈ R,

which implies that the Nicholson’s blowflies model (.) satisfies the assumptions of The-
orem .. Hence, equation (.) has a unique positive almost periodic solution x∗(t), which

http://www.advancesindifferenceequations.com/content/2014/1/72
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Figure 1 Numerical solution x(t) of equation (4.1) for initial value ϕ(s) ≡ 2, s ∈ [–2e, 0].

is globally exponentially stable with the exponential convergent rate λ ≈ .. The numer-
ical simulation in Figure  strongly supports the conclusion.

Remark . To the best of our knowledge, few authors have studied the problems of pos-
itive almost periodic solutions of Nicholson’s blowflies delayed systems with nonlinear
density-dependent mortality terms. It is clear that the results in [–] and the refer-
ences therein cannot be applicable to system (.) to prove the global exponential stability
of a positive almost periodic solution. Moreover, one can find that the main results of []
are restricted to considering the Nicholson’s blowflies delayed systems with the nonlinear
density-dependent mortality term a(t)x

b(t)+x and give no opinions about a(t) – b(t)e–x. This
implies that the results of the present paper are new and complement previously known
results.
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