114 research outputs found

    CMR for Assessment of Diastolic Function

    Get PDF
    Prevalence of heart failure with preserved left ventricular ejection fraction amounts to 50% of all cases with heart failure. Diagnosis assessment requires evidence of left ventricular diastolic dysfunction. Currently, echocardiography is the method of choice for diastolic function testing in clinical practice. Various applications are in use and recommended criteria are followed for classifying the severity of dysfunction. Cardiovascular magnetic resonance (CMR) offers a variety of alternative applications for evaluation of diastolic function, some superior to echocardiography in accuracy and reproducibility, some being complementary. In this article, the role of the available CMR applications for diastolic function testing in clinical practice and research is reviewed and compared to echocardiography

    Subcortical brain volumes, cortical thickness and cortical surface area in families genetically enriched for social anxiety disorder - a multiplex multigenerational neuroimaging study

    Get PDF
    Background Social anxiety disorder (SAD) is a disabling psychiatric condition with a genetic background. Brain alterations in gray matter (GM) related to SAD have been previously reported, but it remains to be elucidated whether GM measures are candidate endophenotypes of SAD. Endophenotypes are measurable characteristics on the causal pathway from genotype to phenotype, providing insight in genetically-based disease mechanisms. Based on a review of existing evidence, we examined whether GM characteristics meet two endophenotype criteria, using data from a unique sample of SAD-patients and their family-members of two generations. First, we investigated whether GM characteristics co-segregate with social anxiety within families genetically enriched for SAD. Secondly, heritability of the GM characteristics was estimated. Methods Families with a genetic predisposition for SAD participated in the Leiden Family Lab study on SAD; T1-weighted MRI brain scans were acquired (n = 110, 8 families). Subcortical volumes, cortical thickness and cortical surface area were determined for a-priori determined regions of interest (ROIs). Next, associations with social anxiety and heritabilities were estimated. Findings Several subcortical and cortical GM characteristics, derived from frontal, parietal and temporal ROIs, co-segregated with social anxiety within families (uncorrected p-level) and showed moderate to high heritability. Interpretation These findings provide preliminary evidence that GM characteristics of multiple ROIs, which are distributed over the brain, are candidate endophenotypes of SAD. Thereby, they shed light on the genetic vulnerability for SAD. Future research is needed to confirm these results and to link them to functional brain alterations and to genetic variations underlying these GM changes

    Automated left ventricular diastolic function evaluation from phase-contrast cardiovascular magnetic resonance and comparison with Doppler echocardiography

    Get PDF
    International audienceBACKGROUND: Early detection of diastolic dysfunction is crucial for patients with incipient heart failure. Although this evaluation could be performed from phase-contrast (PC) cardiovascular magnetic resonance (CMR) data, its usefulness in clinical routine is not yet established, mainly because the interpretation of such data remains mostly based on manual post-processing. Accordingly, our goal was to develop a robust process to automatically estimate velocity and flow rate-related diastolic parameters from PC-CMR data and to test the consistency of these parameters against echocardiography as well as their ability to characterize left ventricular (LV) diastolic dysfunction. RESULTS: We studied 35 controls and 18 patients with severe aortic valve stenosis and preserved LV ejection fraction who had PC-CMR and Doppler echocardiography exams on the same day. PC-CMR mitral flow and myocardial velocity data were analyzed using custom software for semi-automated extraction of diastolic parameters. Inter-operator reproducibility of flow pattern segmentation and functional parameters was assessed on a sub-group of 30 subjects. The mean percentage of overlap between the transmitral flow segmentations performed by two independent operators was 99.7 ± 1.6%, resulting in a small variability ( 0.71) and receiver operating characteristic (ROC) analysis revealed their ability to separate patients from controls, with sensitivity > 0.80, specificity > 0.80 and accuracy > 0.85. Slight superiority in terms of correlation with echocardiography (r = 0.81) and accuracy to detect LV abnormalities (sensitivity > 0.83, specificity > 0.91 and accuracy > 0.89) was found for the PC-CMR flow-rate related parameters. CONCLUSIONS: A fast and reproducible technique for flow and myocardial PC-CMR data analysis was successfully used on controls and patients to extract consistent velocity-related diastolic parameters, as well as flow rate-related parameters. This technique provides a valuable addition to established CMR tools in the evaluation and the management of patients with diastolic dysfunction

    Advanced Analysis Techniques for Intra-cardiac Flow Evaluation from 4D Flow MRI

    Get PDF
    Time-resolved 3D velocity-encoded MR imaging with velocity encoding in three directions (4D Flow) has emerged as a novel MR acquisition technique providing detailed information on flow in the cardiovascular system. In contrast to other clinically available imaging techniques such as echo-Doppler, 4D Flow MRI provides the 3D Flow velocity field within a volumetric region of interest over the cardiac cycle. This work reviews the most recent advances in the development and application of dedicated image analysis techniques for the assessment of intra-cardiac flow features from 4D Flow MRI.Novel image analysis techniques have been developed for extraction of relevant intra-cardiac flow features from 4D Flow MRI, which have been successfully applied in various patient cohorts and volunteer studies. Disturbed flow patterns have been linked with valvular abnormalities and ventricular dysfunction. Recent technical advances have resulted in reduced scan times and improvements in image quality, increasing the potential clinical applicability of 4D Flow MRI.4D Flow MRI provides unique capabilities for 3D visualization and quantification of intra-cardiac blood flow. Contemporary knowledge on 4D Flow MRI shows promise for further exploration of the potential use of the technique in research and clinical applications

    Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Bramwell-Hill model describes the relation between vascular wall stiffness expressed in aortic distensibility and the pulse wave velocity (PWV), which is the propagation speed of the systolic pressure wave through the aorta. The main objective of this study was to test the validity of this model locally in the aorta by using PWV-assessments based on in-plane velocity-encoded cardiovascular magnetic resonance (CMR), with invasive pressure measurements serving as the gold standard.</p> <p>Methods</p> <p>Seventeen patients (14 male, 3 female, mean age ± standard deviation = 57 ± 9 years) awaiting cardiac catheterization were prospectively included. During catheterization, intra-arterial pressure measurements were obtained in the aorta at multiple locations 5.8 cm apart. PWV was determined regionally over the aortic arch and locally in the proximal descending aorta. Subsequently, patients underwent a CMR examination to measure aortic PWV and aortic distention. Distensibility was determined locally from the aortic distension at the proximal descending aorta and the pulse pressure measured invasively during catheterization and non-invasively from brachial cuff-assessment. PWV was determined regionally in the aortic arch using through-plane and in-plane velocity-encoded CMR, and locally at the proximal descending aorta using in-plane velocity-encoded CMR. Validity of the Bramwell-Hill model was tested by evaluating associations between distensibility and PWV. Also, theoretical PWV was calculated from distensibility measurements and compared with pressure-assessed PWV.</p> <p>Results</p> <p>In-plane velocity-encoded CMR provides stronger correlation (p = 0.02) between CMR and pressure-assessed PWV than through-plane velocity-encoded CMR (r = 0.69 versus r = 0.26), with a non-significant mean error of 0.2 ± 1.6 m/s for in-plane versus a significant (p = 0.006) error of 1.3 ± 1.7 m/s for through-plane velocity-encoded CMR. The Bramwell-Hill model shows a significantly (p = 0.01) stronger association between distensibility and PWV for local assessment (r = 0.8) than for regional assessment (r = 0.7), both for CMR and for pressure-assessed PWV. Theoretical PWV is strongly correlated (r = 0.8) with pressure-assessed PWV, with a statistically significant (p = 0.04) mean underestimation of 0.6 ± 1.1 m/s. This theoretical PWV-estimation is more accurate when invasively-assessed pulse pressure is used instead of brachial cuff-assessment (p = 0.03).</p> <p>Conclusions</p> <p>CMR with in-plane velocity-encoding is the optimal approach for studying Bramwell-Hill associations between local PWV and aortic distensibility. This approach enables non-invasive estimation of local pulse pressure and distensibility.</p

    Impact of source data on the interpretation of contrast-enhanced magnetic resonance angiography of the lower limbs

    Get PDF
    Background The primary purpose of this study is to examine whether use of source data is effective in increasing the number of arterial segments that can be interpreted from maximum intensity projections of lower limb MR angiograms. Correlation between sites of arterial disease and venous contamination was also measured. Interpretation of source data is performed routinely by radiologists, but the value of this has not been well studied with randomized studies. Results The proportion of segments visible above the knee was 87% using maximal intensity projection alone (MIP) and 88% when the MIP was combined with source data. The proportions were 67% for MIP and 72% for MIP plus source data below the knee. There was substantial agreement between presence of arterial disease and venous contamination in the calf and thigh. Conclusion The use of source data increases the number of assessable segments, but not individuals, by a statistically significant but small amount (1.2%, p <0.05). This study supports the association between arterial disease and venous contamination

    Assessment of cardiac remodeling in asymptomatic mitral regurgitation for surgery timing: a comparative study of echocardiography and magnetic resonance imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early surgery is recommended for asymptomatic severe mitral regurgitation (MR), because of increased postoperative left ventricular (LV) dysfunction in patients with late surgery. On the other hand, recent reports emphasized a "watchful waiting" process for the determination of the proper time of mitral valve surgery. In our study, we compared magnetic resonance imaging (MRI) and transthoracic echocardiography to evaluate the LV and left atrial (LA) remodeling; for better definitions of patients that may benefit from early valve surgery.</p> <p>Methods</p> <p>Twenty-one patients with moderate to severe asymptomatic MR were evaluated by echocardiography and MRI. LA and LV ejection fractions (EFs) were calculated by echocardiography and MRI. Pulmonary veins (PVs) were measured from vein orifices in diastole and systole from the tangential of an imaginary circle that completed LA wall. Right upper PV indices were calculated with the formula; (Right upper PV diastolic diameter- Right upper PV systolic diameter)/Right upper PV diastolic diameter.</p> <p>Results</p> <p>In 9 patients there were mismatches between echocardiography and MRI measurements of LV EF. LV EFs were calculated ≥60% by echocardiography, meanwhile < 60% by MRI in these 9 patients. Severity of MR evaluated by effective regurgitant orifice area (EROA) didn't differ with preserved and depressed EFs by MRI (p > 0.05). However, both right upper PV indices (0.16 ± 0.06 vs. 0.24 ± 0.08, p: 0.024) and LA EFs (0.19 ± 0.09 vs. 0.33 ± 0.14, p: 0.025) were significantly decreased in patients with depressed EFs when compared to patients with normal EFs.</p> <p>Conclusions</p> <p>MRI might be preferred when small changes in functional parameters like LV EF, LA EF, and PV index are of clinical importance to disease management like asymptomatic MR patients that we follow up for appropriate surgery timing.</p
    corecore