118 research outputs found

    Three-dimensional culture of human meniscal cells: Extracellular matrix and proteoglycan production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The meniscus is a complex tissue whose cell biology has only recently begun to be explored. Published models rely upon initial culture in the presence of added growth factors. The aim of this study was to test a three-dimensional (3D) collagen sponge microenvironment (without added growth factors) for its ability to provide a microenvironment supportive for meniscal cell extracellular matrix (ECM) production, and to test the responsiveness of cells cultured in this manner to transforming growth factor-β (TGF-β).</p> <p>Methods</p> <p>Experimental studies were approved prospectively by the authors' Human Subjects Institutional Review Board. Human meniscal cells were isolated from surgical specimens, established in monolayer culture, seeded into a 3D scaffold, and cell morphology and extracellular matrix components (ECM) evaluated either under control condition or with addition of TGF-β. Outcome variables were evaluation of cultured cell morphology, quantitative measurement of total sulfated proteoglycan production, and immunohistochemical study of the ECM components chondroitin sulfate, keratan sulfate, and types I and II collagen.</p> <p>Result and Conclusion</p> <p>Meniscal cells attached well within the 3D microenvironment and expanded with culture time. The 3D microenvironment was permissive for production of chondroitin sulfate, types I and II collagen, and to a lesser degree keratan sulfate. This microenvironment was also permissive for growth factor responsiveness, as indicated by a significant increase in proteoglycan production when cells were exposed to TGF-β (2.48 μg/ml ± 1.00, mean ± S.D., vs control levels of 1.58 ± 0.79, p < 0.0001). Knowledge of how culture microenvironments influence meniscal cell ECM production is important; the collagen sponge culture methodology provides a useful in vitro tool for study of meniscal cell biology.</p

    Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular docking methods are commonly used for predicting binding modes and energies of ligands to proteins. For accurate complex geometry and binding energy estimation, an appropriate method for calculating partial charges is essential. AutoDockTools software, the interface for preparing input files for one of the most widely used docking programs AutoDock 4, utilizes the Gasteiger partial charge calculation method for both protein and ligand charge calculation. However, it has already been shown that more accurate partial charge calculation - and as a consequence, more accurate docking- can be achieved by using quantum chemical methods. For docking calculations quantum chemical partial charge calculation as a routine was only used for ligands so far. The newly developed Mozyme function of MOPAC2009 allows fast partial charge calculation of proteins by quantum mechanical semi-empirical methods. Thus, in the current study, the effect of semi-empirical quantum-mechanical partial charge calculation on docking accuracy could be investigated.</p> <p>Results</p> <p>The docking accuracy of AutoDock 4 using the original AutoDock scoring function was investigated on a set of 53 protein ligand complexes using Gasteiger and PM6 partial charge calculation methods. This has enabled us to compare the effect of the partial charge calculation method on docking accuracy utilizing AutoDock 4 software. Our results showed that the docking accuracy in regard to complex geometry (docking result defined as accurate when the RMSD of the first rank docking result complex is within 2 Å of the experimentally determined X-ray structure) significantly increased when partial charges of the ligands and proteins were calculated with the semi-empirical PM6 method.</p> <p>Out of the 53 complexes analyzed in the course of our study, the geometry of 42 complexes were accurately calculated using PM6 partial charges, while the use of Gasteiger charges resulted in only 28 accurate geometries. The binding affinity estimation was not influenced by the partial charge calculation method - for more accurate binding affinity prediction development of a new scoring function for AutoDock is needed.</p> <p>Conclusion</p> <p>Our results demonstrate that the accuracy of determination of complex geometry using AutoDock 4 for docking calculation greatly increases with the use of quantum chemical partial charge calculation on both the ligands and proteins.</p

    Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines

    Get PDF
    AimsModulation of DNA base excision repair (BER) has the potential to enhance response to chemotherapy and improve outcomes in tumours such as melanoma and glioma. APE1, a critical protein in BER that processes potentially cytotoxic abasic sites (AP sites), is a promising new target in cancer. In the current study, we aimed to develop small molecule inhibitors of APE1 for cancer therapy.MethodsAn industry-standard high throughput virtual screening strategy was adopted. The Sybyl8.0 (Tripos, St Louis, MO, USA) molecular modelling software suite was used to build inhibitor templates. Similarity searching strategies were then applied using ROCS 2.3 (Open Eye Scientific, Santa Fe, NM, USA) to extract pharmacophorically related subsets of compounds from a chemically diverse database of 2.6 million compounds. The compounds in these subsets were subjected to docking against the active site of the APE1 model, using the genetic algorithm-based programme GOLD2.7 (CCDC, Cambridge, UK). Predicted ligand poses were ranked on the basis of several scoring functions. The top virtual hits with promising pharmaceutical properties underwent detailed in vitro analyses using fluorescence-based APE1 cleavage assays and counter screened using endonuclease IV cleavage assays, fluorescence quenching assays and radiolabelled oligonucleotide assays. Biochemical APE1 inhibitors were then subjected to detailed cytotoxicity analyses.ResultsSeveral specific APE1 inhibitors were isolated by this approach. The IC(50) for APE1 inhibition ranged between 30 nM and 50 μM. We demonstrated that APE1 inhibitors lead to accumulation of AP sites in genomic DNA and potentiated the cytotoxicity of alkylating agents in melanoma and glioma cell lines.ConclusionsOur study provides evidence that APE1 is an emerging drug target and could have therapeutic application in patients with melanoma and glioma

    Monitoring lactoferrin iron levels by fluorescence resonance energy transfer: A combined chemical and computational study

    Get PDF
    Three forms of lactoferrin (Lf) that differed in their levels of iron loading (Lf, LfFe, and LfFe2) were simultaneously labeled with the fluorophores AF350 and AF430. All three resulting fluorescent lactoferrins exhibited fluorescence resonance energy transfer (FRET), but they all presented different FRET patterns. Whereas only partial FRET was observed for Lf and LfFe, practically complete FRET was seen for the holo form (LfFe2). For each form of metal-loaded lactoferrin, the AF350–AF430 distance varied depending on the protein conformation, which in turn depended on the level of iron loading. Thus, the FRET patterns of these lactoferrins were found to correlate with their iron loading levels. In order to gain greater insight into the number of fluorophores and the different FRET patterns observed (i.e., their iron levels), a computational analysis was performed. The results highlighted a number of lysines that have the greatest influence on the FRET profile. Moreover, despite the lack of an X-ray structure for any LfFe species, our study also showed that this species presents modified subdomain organization of the N-lobe, which narrows its iron-binding site. Complete domain rearrangement occurs during the LfFe to LfFe2 transition. Finally, as an example of the possible applications of the results of this study, we made use of the FRET fingerprints of these fluorescent lactoferrins to monitor the interaction of lactoferrin with a healthy bacterium, namely Bifidobacterium breve. This latter study demonstrated that lactoferrin supplies iron to this bacterium, and suggested that this process occurs with no protein internalization.This work was supported by MINECO and FEDER (projects CTQ2012-32236, CTQ2011-23336, and BIO2012-39682-C02-02) and BIOSEARCH SA. F.C. and V.M.R. are grateful to the Spanish MINECO for FPI fellowships

    Oxford Phase 3 unicompartmental knee arthroplasty: medium-term results of a minimally invasive surgical procedure

    Get PDF
    PURPOSE: In the last decade, a major increase in the use of and interest in unicompartmental knee arthroplasty (UKA) has developed. The Oxford Phase 3 UKA is implanted with a minimally invasive technique using newly developed instruments. The objective of this prospective study was to evaluate the outcome of UKA in patients with medial osteoarthritis of the knee in a high-volume unit. METHODS: Two-hundred and forty-four UKAs were performed with a minimally invasive approach. The median age was 72 (43-91) years. The median follow-up was 4.2 years (range 1-10.4 years). Fourteen patients died, and nine were considered to be lost to follow-up, but all had a well-functioning prosthesis in situ until their last follow-up. Pain, function and health-related quality of life were evaluated pre- and postoperatively using patient- and assessor-based outcome scores, as well as radiographic evidence. RESULTS: The mean Knee Society knee and function scores, WOMAC-scores, Oxford-score and VAS pain and satisfaction all improved. Nine knees required revision. Eleven patients required an additional arthroscopic procedure due to persisting pain secondary to intra-articular pathology, and four patients required manipulation under anaesthesia because of limited range of motion. The 7-year cumulative survival rate of the arthroplasty was 94.4%. A low incidence (21%) of a radiolucent line beneath the tibial component was observed at 5 years of follow-up. CONCLUSION: This study showed a high survival rate of the Oxford Phase 3 UKA. Patient satisfaction and functional performance were also very high. Major complication rate was low; in addition, the incidence of radiolucency under the tibial component, when compared to present literature, was low. When strict indication criteria are followed, excellent, durable, and in our opinion reliable, results can be expected for this procedur

    Antibody Recognition of Cancer-Related Gangliosides and Their Mimics Investigated Using in silico Site Mapping

    Get PDF
    Modified gangliosides may be overexpressed in certain types of cancer, thus, they are considered a valuable target in cancer immunotherapy. Structural knowledge of their interaction with antibodies is currently limited, due to the large size and high flexibility of these ligands. In this study, we apply our previously developed site mapping technique to investigate the recognition of cancer-related gangliosides by anti-ganglioside antibodies. The results reveal a potential ganglioside-binding motif in the four antibodies studied, suggesting the possibility of structural convergence in the anti-ganglioside immune response. The structural basis of the recognition of ganglioside-mimetic peptides is also investigated using site mapping and compared to ganglioside recognition. The peptides are shown to act as structural mimics of gangliosides by interacting with many of the same binding site residues as the cognate carbohydrate epitopes. These studies provide important clues as to the structural basis of immunological mimicry of carbohydrates

    Construction of 3D models of the CYP11B family as a tool to predict ligand binding characteristics

    Get PDF
    Aldosterone is synthesised by aldosterone synthase (CYP11B2). CYP11B2 has a highly homologous isoform, steroid 11β-hydroxylase (CYP11B1), which is responsible for the biosynthesis of aldosterone precursors and glucocorticoids. To investigate aldosterone biosynthesis and facilitate the search for selective CYP11B2 inhibitors, we constructed three-dimensional models for CYP11B1 and CYP11B2 for both human and rat. The models were constructed based on the crystal structure of Pseudomonas Putida CYP101 and Oryctolagus Cuniculus CYP2C5. Small steric active site differences between the isoforms were found to be the most important determinants for the regioselective steroid synthesis. A possible explanation for these steric differences for the selective synthesis of aldosterone by CYP11B2 is presented. The activities of the known CYP11B inhibitors metyrapone, R-etomidate, R-fadrazole and S-fadrazole were determined using assays of V79MZ cells that express human CYP11B1 and CYP11B2, respectively. By investigating the inhibitors in the human CYP11B models using molecular docking and molecular dynamics simulations we were able to predict a similar trend in potency for the inhibitors as found in the in vitro assays. Importantly, based on the docking and dynamics simulations it is possible to understand the enantioselectivity of the human enzymes for the inhibitor fadrazole, the R-enantiomer being selective for CYP11B2 and the S-enantiomer being selective for CYP11B1

    Isozyme-Specific Ligands for O-acetylserine sulfhydrylase, a Novel Antibiotic Target

    Get PDF
    Conceived and designed the experiments: FS PC BC ES AM. Performed the experiments: FS RS ES PF SR. Analyzed the data: FS BC ES PF GEK PFC AM. Contributed reagents/materials/analysis tools: PC PB GC. Wrote the paper: FS GEK BC AM.The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block bacterial cysteine biosynthesis.Yeshttp://www.plosone.org/static/editorial#pee
    corecore