158 research outputs found

    Parenting a child with phenylketonuria or galactosemia: implications for health-related quality of life

    Get PDF
    Parents of children with chronic disorders have an impaired health-related quality of life (HRQoL) compared to parents of healthy children. Remarkably, parents of children with a metabolic disorder reported an even lower HRQoL than parents of children with other chronic disorders. Possibly, the uncertainty about the course of the disease and the limited life expectancy in many metabolic disorders are important factors in the low parental HRQoL. Therefore, we performed a cross-sectional study in parents of children with phenylketonuria (PKU, OMIM #261600) and galactosemia (OMIM #230400), metabolic disorders not affecting life expectancy, in order to investigate their HRQoL compared to parents of healthy children and to parents of children with other metabolic disorders. A total of 185 parents of children with PKU and galactosemia aged 1-19 years completed two questionnaires. Parents of children with PKU or galactosemia reported a HRQoL comparable to parents of healthy children and a significantly better HRQoL than parents of children with other metabolic disorders. Important predictors for parental mental HRQoL were the psychosocial factors emotional support and loss of friendship. As parental mental functioning influences the health, development and adjustment of their children, it is important that treating physicians also pay attention to the wellbeing of the parents. The insight that emotional support and loss of friendship influence the HRQoL of the parents enables treating physicians to provide better support for these parents

    Genes in S and T Subgenomes Are Responsible for Hybrid Lethality in Interspecific Hybrids between Nicotiana tabacum and Nicotiana occidentalis

    Get PDF
    Many species of Nicotiana section Suaveolentes produce inviable F(1) hybrids after crossing with Nicotiana tabacum (genome constitution SSTT), a phenomenon that is often called hybrid lethality. Through crosses with monosomic lines of N. tabacum lacking a Q chromosome, we previously determined that hybrid lethality is caused by interaction between gene(s) on the Q chromosome belonging to the S subgenome of N. tabacum and gene(s) in Suaveolentes species. Here, we examined if hybrid seedlings from the cross N. occidentalis (section Suaveolentes)×N. tabacum are inviable despite a lack of the Q chromosome.Hybrid lethality in the cross of N. occidentalis×N. tabacum was characterized by shoots with fading color. This symptom differed from what has been previously observed in lethal crosses between many species in section Suaveolentes and N. tabacum. In crosses of monosomic N. tabacum plants lacking the Q chromosome with N. occidentalis, hybrid lethality was observed in hybrid seedlings either lacking or possessing the Q chromosome. N. occidentalis was then crossed with two progenitors of N. tabacum, N. sylvestris (SS) and N. tomentosiformis (TT), to reveal which subgenome of N. tabacum contains gene(s) responsible for hybrid lethality. Hybrid seedlings from the crosses N. occidentalis×N. tomentosiformis and N. occidentalis×N. sylvestris were inviable.Although the specific symptoms of hybrid lethality in the cross N. occidentalis×N. tabacum were similar to those appearing in hybrids from the cross N. occidentalis×N. tomentosiformis, genes in both the S and T subgenomes of N. tabacum appear responsible for hybrid lethality in crosses with N. occidentalis

    HIV Tropism and Decreased Risk of Breast Cancer

    Get PDF
    During the first two decades of the U.S. AIDS epidemic, and unlike some malignancies, breast cancer risk was significantly lower for women with human immunodeficiency virus (HIV) infection compared to the general population. This deficit in HIV-associated breast cancer could not be attributed to differences in survival, immune deficiency, childbearing or other breast cancer risk factors. HIV infects mononuclear immune cells by binding to the CD4 molecule and to CCR5 or CXCR4 chemokine coreceptors. Neoplastic breast cells commonly express CXCR4 but not CCR5. In vitro, binding HIV envelope protein to CXCR4 has been shown to induce apoptosis of neoplastic breast cells. Based on these observations, we hypothesized that breast cancer risk would be lower among women with CXCR4-tropic HIV infection.We conducted a breast cancer nested case-control study among women who participated in the WIHS and HERS HIV cohort studies with longitudinally collected risk factor data and plasma. Cases were HIV-infected women (mean age 46 years) who had stored plasma collected within 24 months of breast cancer diagnosis and an HIV viral load≥500 copies/mL. Three HIV-infected control women, without breast cancer, were matched to each case based on age and plasma collection date. CXCR4-tropism was determined by a phenotypic tropism assay. Odds ratios (OR) and 95% confidence intervals (CI) for breast cancer were estimated by exact conditional logistic regression. Two (9%) of 23 breast cancer cases had CXCR4-tropic HIV, compared to 19 (28%) of 69 matched controls. Breast cancer risk was significantly and independently reduced with CXCR4 tropism (adjusted odds ratio, 0.10, 95% CI 0.002-0.84) and with menopause (adjusted odds ratio, 0.08, 95% CI 0.001-0.83). Adjustment for CD4+ cell count, HIV viral load, and use of antiretroviral therapy did not attenuate the association between infection with CXCR4-tropic HIV and breast cancer.Low breast cancer risk with HIV is specifically linked to CXCR4-using variants of HIV. These variants are thought to exclusively bind to and signal through a receptor that is commonly expressed on hyperplastic and neoplastic breast duct cells. Additional studies are needed to confirm these observations and to understand how CXCR4 might reduce breast cancer risk

    Complex Deleterious Interactions Associated with Malic Enzyme May Contribute to Reproductive Isolation in the Copepod Tigriopus californicus

    Get PDF
    Dobzhansky-Muller incompatibilities can result from the interactions of more than a single pair of interacting genes and there are several different models of how such complex interactions can be structured. Previous empirical work has identified complex conspecific epistasis as a form of complex interaction that has contributed to postzygotic reproductive isolation between taxa, but other forms of complexity are also possible. Here, I probe the genetic basis of reproductive isolation in crosses of the intertidal copepod Tigriopus californicus by looking at the impact of markers in genes encoding metabolic enzymes in F2 hybrids. The region of the genome associated with the locus ME2 is shown to have strong, repeatable impacts on the fitness of hybrids in crosses and epistatic interactions with another chromosomal region marked by the GOT2 locus in one set of crosses. In a cross between one of these populations and a third population, these two regions do not appear to interact despite the continuation of a large effect of the ME2 region itself in both crosses. The combined results suggest that the ME2 chromosomal region is involved in incompatibilities with several unique partners. If these deleterious interactions all stem from the same factor in this region, that would suggest a different form of complexity from complex conspecific epistasis, namely, multiple independent deleterious interactions stemming from the same factor. Confirmation of this idea will require more fine-scale mapping of the interactions of the ME2 region of the genome

    Selection against Spurious Promoter Motifs Correlates with Translational Efficiency across Bacteria

    Get PDF
    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the −10 promoter motifs that bind the σ70 subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of −10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, −10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also confirms previous results indicating that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria

    Adult cognitive outcomes in phenylketonuria:explaining causes of variability beyond average Phe levels

    Get PDF
    OBJECTIVE: The objective was to deepen the understanding of the causes of individual variability in phenylketonuria (PKU) by investigating which metabolic variables are most important for predicting cognitive outcomes (Phe average vs Phe variation) and by assessing the risk of cognitive impairment associated with adopting a more relaxed approach to the diet than is currently recommended. METHOD: We analysed associations between metabolic and cognitive measures in a mixed sample of English and Italian early-treated adults with PKU (N = 56). Metabolic measures were collected through childhood, adolescence and adulthood; cognitive measures were collected in adulthood. Metabolic measures included average Phe levels (average of median values for each year in a given period) and average Phe variations (average yearly standard deviations). Cognition was measured with IQ and a battery of cognitive tasks. RESULTS: Phe variation was as important, if not more important, than Phe average in predicting adult outcomes and contributed independently. Phe variation was particularly detrimental in childhood. Together, childhood Phe variation and adult Phe average predicted around 40% of the variation in cognitive scores. Poor cognitive scores (> 1 SD from controls) occurred almost exclusively in individuals with poor metabolic control and the risk of poor scores was about 30% higher in individuals with Phe values exceeding recommended thresholds. CONCLUSIONS: Our results provide support for current European guidelines (average Phe value = < 360 μmol/l in childhood; = < 600 μmo/l from 12 years onwards), but they suggest an additional recommendation to maintain stable levels (possibly Phe SD = < 180 μmol/l throughout life). PUBLIC SIGNIFICANCE STATEMENTS: We investigated the relationship between how well people with phenylketonuria control blood Phe throughout their life and their ability to carry out cognitive tasks in adulthood. We found that avoiding blood Phe peaks was as important if not more important that maintaining average low Phe levels. This was particularly essential in childhood. We also found that blood Phe levels above recommended European guidelines was associated with around 30% increase in the risk of poor cognitive outcomes

    Mediterranean-climate streams and rivers: geographically separated but ecologically comparable freshwater systems

    Get PDF
    Streams and rivers in mediterranean-climate regions (med-rivers in med-regions) are ecologically unique, with flow regimes reflecting precipitation patterns. Although timing of drying and flooding is predictable, seasonal and annual intensity of these events is not. Sequential flooding and drying, coupled with anthropogenic influences make these med-rivers among the most stressed riverine habitat worldwide. Med-rivers are hotspots for biodiversity in all med-regions. Species in med-rivers require different, often opposing adaptive mechanisms to survive drought and flood conditions or recover from them. Thus, metacommunities undergo seasonal differences, reflecting cycles of river fragmentation and connectivity, which also affect ecosystem functioning. River conservation and management is challenging, and trade-offs between environmental and human uses are complex, especially under future climate change scenarios. This overview of a Special Issue on med-rivers synthesizes information presented in 21 articles covering the five med-regions worldwide: Mediterranean Basin, coastal California, central Chile, Cape region of South Africa, and southwest and southern Australia. Research programs to increase basic knowledge in less-developed med-regions should be prioritized to achieve increased abilities to better manage med-rivers

    Deep sequencing of the Mexican avocado transcriptome, an ancient angiosperm with a high content of fatty acids

    Get PDF
    Background: Avocado (Persea americana) is an economically important tropical fruit considered to be a good source of fatty acids. Despite its importance, the molecular and cellular characterization of biochemical and developmental processes in avocado is limited due to the lack of transcriptome and genomic information. Results: The transcriptomes of seeds, roots, stems, leaves, aerial buds and flowers were determined using different sequencing platforms. Additionally, the transcriptomes of three different stages of fruit ripening (pre-climacteric, climacteric and post-climacteric) were also analyzed. The analysis of the RNAseqatlas presented here reveals strong differences in gene expression patterns between different organs, especially between root and flower, but also reveals similarities among the gene expression patterns in other organs, such as stem, leaves and aerial buds (vegetative organs) or seed and fruit (storage organs). Important regulators, functional categories, and differentially expressed genes involved in avocado fruit ripening were identified. Additionally, to demonstrate the utility of the avocado gene expression atlas, we investigated the expression patterns of genes implicated in fatty acid metabolism and fruit ripening. Conclusions: A description of transcriptomic changes occurring during fruit ripening was obtained in Mexican avocado, contributing to a dynamic view of the expression patterns of genes involved in fatty acid biosynthesis and the fruit ripening process
    • …
    corecore