1,153 research outputs found

    Impact of routine cryptococcal antigen screening and targeted pre-emptive fluconazole therapy in antiretroviral naive HIV-infected adults with less than 100 CD4 cells/ÎźL: a systematic review and meta-analysis.

    Get PDF
    Cryptococcal antigen (CrAg) screening and targeted pre-emptive fluconazole in antiretroviral naive HIV-infected adults with less than 100 CD4 cells/ÎźL seems promising to reduce the burden of cryptococcal meningitis (CM). We searched MEDLINE, EMBASE, and Web of Science and used random-effect meta-analysis to assess the prevalence of blood CrAg-positivity (31 studies; 35,644 participants) and asymptomatic CM in CrAg-positives, incidence of CM and all-cause mortality in screened participants. Pooled prevalence of blood CrAg-positivity was 6% (95%CI: 5 - 7) and asymptomatic CM in CrAg-positives was 33% (95%CI: 21 - 45). Incidence of CM without pre-emptive fluconazole was 21.4% (95%CI: 11.6 - 34.4) and 5.7% (95%CI: 3.0 - 9.7) with pre-emptive fluconazole initiated at 800 mg/day. In CrAg-positives, post-screening lumbar puncture prior to initiating pre-emptive fluconazole at 800 mg/day further reduced incidence of CM to null and showed some survival benefits. However, all-cause mortality remained significantly higher in CrAg-positives than CrAg-negatives: RR: 2.2 (95%CI: 1.7 - 2.9, p<0.001)

    Algorithms for flows over time with scheduling costs

    Get PDF
    Flows over time have received substantial attention from both an optimization and (more recently) a game-theoretic perspective. In this model, each arc has an associated delay for traversing the arc, and a bound on the rate of flow entering the arc; flows are time-varying. We consider a setting which is very standard within the transportation economic literature, but has received little attention from an algorithmic perspective. The flow consists of users who are able to choose their route but also their departure time, and who desire to arrive at their destination at a particular time, incurring a scheduling cost if they arrive earlier or later. The total cost of a user is then a combination of the time they spend commuting, and the scheduling cost they incur. We present a combinatorial algorithm for the natural optimization problem, that of minimizing the average total cost of all users (i.e., maximizing the social welfare). Based on this, we also show how to set tolls so that this optimal flow is induced as an equilibrium of the underlying game

    Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems

    Get PDF
    A current global trend towards intensification or specialization of agricultural enterprises has been accompanied by increasing public awareness of associated environmental consequences. Air and water pollution from losses of nutrients, such as nitrogen (N) and sulphur (S), are a major concern. Governments have initiated extensive regulatory frameworks, including various land use policies, in an attempt to control or reduce the losses. This paper presents an overview of critical input and loss processes affecting N and S for temperate climates, and provides some background to the discussion in subsequent papers evaluating specific farming systems. Management effects on potential gaseous and leaching losses, the lack of synchrony between supply of nutrients and plant demand, and options for optimizing the efficiency of N and S use are reviewed. Integration of inorganic and organic fertilizer inputs and the equitable re-distribution of nutrients from manure are discussed. The paper concludes by highlighting a need for innovative research that is also targeted to practical approaches for reducing N and S losses, and improving the overall synchrony between supply and demand

    A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats.

    Get PDF
    Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0-20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was Âą 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01-200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Song Practice Promotes Acute Vocal Variability at a Key Stage of Sensorimotor Learning

    Get PDF
    BACKGROUND: Trial by trial variability during motor learning is a feature encoded by the basal ganglia of both humans and songbirds, and is important for reinforcement of optimal motor patterns, including those that produce speech and birdsong. Given the many parallels between these behaviors, songbirds provide a useful model to investigate neural mechanisms underlying vocal learning. In juvenile and adult male zebra finches, endogenous levels of FoxP2, a molecule critical for language, decrease two hours after morning song onset within area X, part of the basal ganglia-forebrain pathway dedicated to song. In juveniles, experimental 'knockdown' of area X FoxP2 results in abnormally variable song in adulthood. These findings motivated our hypothesis that low FoxP2 levels increase vocal variability, enabling vocal motor exploration in normal birds. METHODOLOGY/PRINCIPAL FINDINGS: After two hours in either singing or non-singing conditions (previously shown to produce differential area X FoxP2 levels), phonological and sequential features of the subsequent songs were compared across conditions in the same bird. In line with our prediction, analysis of songs sung by 75 day (75d) birds revealed that syllable structure was more variable and sequence stereotypy was reduced following two hours of continuous practice compared to these features following two hours of non-singing. Similar trends in song were observed in these birds at 65d, despite higher overall within-condition variability at this age. CONCLUSIONS/SIGNIFICANCE: Together with previous work, these findings point to the importance of behaviorally-driven acute periods during song learning that allow for both refinement and reinforcement of motor patterns. Future work is aimed at testing the observation that not only does vocal practice influence expression of molecular networks, but that these networks then influence subsequent variability in these skills

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Presence of genes for type III secretion system 2 in Vibrio mimicus strains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vibrios, which include more than 100 species, are ubiquitous in marine and estuarine environments, and several of them e.g. <it>Vibrio cholerae</it>, <it>V. parahaemolyticus</it>, <it>V. vulnificus </it>and <it>V. mimicus</it>, are pathogens for humans. Pathogenic <it>V. parahaemolyticus </it>strains possess two sets of genes for type III secretion system (T3SS), T3SS1 and T3SS2. The latter are critical for virulence of the organism and be classified into two distinct phylogroups, T3SS2ι and T3SS2β, which are reportedly also found in pathogenic <it>V. cholerae </it>non-O1/non-O139 serogroup strains. However, whether T3SS2-related genes are present in other <it>Vibrio </it>species remains unclear.</p> <p>Results</p> <p>We therefore examined the distribution of the genes for T3SS2 in vibrios other than <it>V. parahaemolyticus </it>by using a PCR assay targeting both T3SS2ι and T3SS2β genes. Among the 32 <it>Vibrio </it>species tested in our study, several T3SS2-related genes were detected in three species, <it>V. cholerae</it>, <it>V. mimicus </it>and <it>V. hollisae</it>, and most of the essential genes for type III secretion were present in T3SS2-positive <it>V. cholerae </it>and <it>V. mimicus </it>strains. Moreover, both <it>V. mimicus </it>strains possessing T3SS2ι and T3SS2β were identified. The gene organization of the T3SS2 gene clusters in <it>V. mimicus </it>strains was fundamentally similar to that of <it>V. parahaemolyticus </it>and <it>V. cholerae </it>in both T3SS2ι- and T3SS2β-possessing strains.</p> <p>Conclusions</p> <p>This study is the first reported evidence of the presence of T3SS2 gene clusters in <it>V. mimicus </it>strains. This finding thus provides a new insight into the pathogenicity of the <it>V. mimicus </it>species.</p

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore