229 research outputs found

    Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis

    Get PDF
    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind

    Regional Environmental Breadth Predicts Geographic Range and Longevity in Fossil Marine Genera

    Get PDF
    Geographic range is a good indicator of extinction susceptibility in fossil marine species and higher taxa. The widely-recognized positive correlation between geographic range and taxonomic duration is typically attributed to either accumulating geographic range with age or an extinction buffering effect, whereby cosmopolitan taxa persist longer because they are reintroduced by dispersal from remote source populations after local extinction. The former hypothesis predicts that all taxa within a region should have equal probabilities of extinction regardless of global distributions while the latter predicts that cosmopolitan genera will have greater survivorship within a region than endemics within the same region. Here we test the assumption that all taxa within a region have equal likelihoods of extinction.We use North American and European occurrences of marine genera from the Paleobiology Database and the areal extent of marine sedimentary cover in North America to show that endemic and cosmopolitan fossil marine genera have significantly different range-duration relationships and that broad geographic range and longevity are both predicted by regional environmental breadth. Specifically, genera that occur outside of the focal region are significantly longer lived and have larger geographic ranges and environmental breadths within the focal region than do their endemic counterparts, even after controlling for differences in sampling intensity. Analyses of the number of paleoenvironmental zones occupied by endemic and cosmopolitan genera suggest that the number of paleoenvironmental zones occupied is a key factor of geographic range that promotes genus survivorship.Wide environmental tolerances within a single region predict both broad geographic range and increased longevity in marine genera over evolutionary time. This result provides a specific driving mechanism for the spatial and temporal distributions of marine genera at regional and global scales and is consistent with the niche-breadth hypothesis operating on macroevolutionary timescales

    Zanamivir Conjugated to Poly-L-Glutamine is Much More Active Against Influenza Viruses in Mice and Ferrets Than the Drug Itself

    Get PDF
    Purpose: Previously, polymer-attached zanamivir had been found to inhibit influenza A viruses in vitro far better than did small-molecule zanamivir (1) itself. The aim of this study was to identify in vitro—using the plaque reduction assay—a highly potent 1-polymer conjugate, and subsequently test its antiviral efficacy in vivo. Methods: By examining the structure-activity relationship of 1-polymer conjugates in the plaque assay, we have determined that the most potent inhibitor against several representative influenza virus strains has a neutral high-molecular-weight backbone and a short alkyl linker. We have examined this optimal polymeric inhibitor for efficacy and immunogenicity in the mouse and ferret models of infection. Results: 1 attached to poly-L-glutamine is an effective therapeutic for established influenza infection in ferrets, reducing viral titers up to 30-fold for 6 days. There is also up to a 190-fold reduction in viral load when the drug is used as a combined prophylactic/therapeutic in mice. Additionally, we see no evidence that the drug conjugate stimulates an immune response in mice upon repeat administration. Conclusions: 1 attached to a neutral high-molecular-weight backbone through a short alkyl linker drastically reduced both in vitro and in vivo titers compared to those observed with 1 itself. Thus, further development of this polymeric zanamivir for the mitigation of influenza infection seems warranted.National Institutes of Health (U.S.) (Grant U01-AI074443

    Transcriptome Analysis and SNP Development Can Resolve Population Differentiation of Streblospio benedicti, a Developmentally Dimorphic Marine Annelid

    Get PDF
    Next-generation sequencing technology is now frequently being used to develop genomic tools for non-model organisms, which are generally important for advancing studies of evolutionary ecology. One such species, the marine annelid Streblospio benedicti, is an ideal system to study the evolutionary consequences of larval life history mode because the species displays a rare offspring dimorphism termed poecilogony, where females can produce either many small offspring or a few large ones. To further develop S. benedicti as a model system for studies of life history evolution, we apply 454 sequencing to characterize the transcriptome for embryos, larvae, and juveniles of this species, for which no genomic resources are currently available. Here we performed a de novo alignment of 336,715 reads generated by a quarter GS-FLX (Roche 454) run, which produced 7,222 contigs. We developed a novel approach for evaluating the site frequency spectrum across the transcriptome to identify potential signatures of selection. We also developed 84 novel single nucleotide polymorphism (SNP) markers for this species that are used to distinguish coastal populations of S. benedicti. We validated the SNPs by genotyping individuals of different developmental modes using the BeadXPress Golden Gate assay (Illumina). This allowed us to evaluate markers that may be associated with life-history mode

    Environmental Predictors of Diversity in Recent Planktonic Foraminifera as Recorded in Marine Sediments

    Get PDF
    © 2016 Fenton et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. [4.0 license]. The attached file is the published version of the article

    A Prospective Randomized Controlled Trial of the Effects of Vitamin D Supplementation on Cardiovascular Disease Risk

    Get PDF
    Vitamin D (VitD) supplementation has been advocated for cardiovascular risk reduction; however, supporting data are sparse. The objective of this study was to determine whether VitD supplementation reduces cardiovascular risk. Subjects in this prospective, randomized, double-blind, placebo-controlled trial of post-menopausal women with serum 25-hydroxyvitamin D concentrations >10 and <60 ng/mL were randomized to Vitamin D3 2500 IU or placebo, daily for 4 months. Primary endpoints were changes in brachial artery flow-mediated vasodilation (FMD), carotid-femoral pulse wave velocity (PWV), and aortic augmentation index (AIx). The 114 subjects were mean (standard deviation) 63.9 (3.0) years old with a 25-hydroxyvitamin D level of 31.3 (10.6) ng/mL. Low VitD (<30 ng/mL) was present in 47% and was associated with higher body-mass index, systolic blood pressure, glucose, CRP, and lower FMD (all p<0.05). After 4 months, 25-hydroxyvitamin D levels increased by 15.7 (9.3) ng/mL on vitamin D3 vs. −0.2 (6.1) ng/mL on placebo (p<0.001). There were no significant differences between groups in changes in FMD (0.3 [3.4] vs. 0.3 [2.6] %, p = 0.77), PWV (0.00 [1.06] vs. 0.05 [0.92] m/s, p = 0.65), AIx (2.7 [6.3] vs. 0.9 [5.6] %, p = 0.10), or CRP (0.3 [1.9] vs. 0.3 [4.2] mg/L, p = 0.97). Multivariable models showed no significant interactions between treatment group and low VitD status (<30 ng/mL) for changes in FMD (p = 0.65), PWV (p = 0.93), AIx (p = 0.97), or CRP (p = 0.26).In conclusion, VitD supplementation did not improve endothelial function, arterial stiffness, or inflammation. These observations do not support use of VitD supplementation to reduce cardiovascular disease risk

    Drivers of Cape Verde archipelagic endemism in keyhole limpets

    Get PDF
    Oceanic archipelagos are the ideal setting for investigating processes that shape species assemblages. Focusing on keyhole limpets, genera Fissurella and Diodora from Cape Verde Islands, we used an integrative approach combining molecular phylogenetics with ocean transport simulations to infer species distribution patterns and analyse connectivity. Dispersal simulations, using pelagic larval duration and ocean currents as proxies, showed a reduced level of connectivity despite short distances between some of the islands. It is suggested that dispersal and persistence driven by patterns of oceanic circulation favouring self-recruitment played a primary role in explaining contemporary species distributions. Mitochondrial and nuclear data revealed the existence of eight Cape Verde endemic lineages, seven within Fissurella, distributed across the archipelago, and one within Diodora restricted to Boavista. The estimated origins for endemic Fissurella and Diodora were 10.2 and 6.7 MY, respectively. Between 9.5 and 4.5 MY, an intense period of volcanism in Boavista might have affected Diodora, preventing its diversification. Having originated earlier, Fissurella might have had more opportunities to disperse to other islands and speciate before those events. Bayesian analyses showed increased diversification rates in Fissurella possibly promoted by low sea levels during Plio-Pleistocene, which further explain differences in species richness between both genera.FCT - Portuguese Science Foundation [SFRH/BPD/109685/2015, SFRH/BPD/111003/2015]; Norte Portugal Regional Operational Program (NORTE), under the PORTUGAL Partnership Agreement, through the European Regional Development Fund (ERDF) [MARINFO - NORTE-01-0145-FEDER-000031]info:eu-repo/semantics/publishedVersio

    Darwin's Manufactory Hypothesis Is Confirmed and Predicts the Extinction Risk of Extant Birds

    Get PDF
    In the Origin of Species Darwin hypothesized that the “manufactory” of species operates at different rates in different lineages and that the richness of taxonomic units is autocorrelated across levels of the taxonomic hierarchy. We confirm the manufactory hypothesis using a database of all the world's extant avian subspecies, species and genera. The hypothesis is confirmed both in correlations across all genera and in paired comparisons controlling for phylogeny. We also find that the modern risk of extinction, as measured by “Red List” classifications, differs across the different categories of genera identified by Darwin. Specifically, species in “manufactory” genera are less likely to be threatened, endangered or recently extinct than are “weak manufactory” genera. Therefore, although Darwin used his hypothesis to investigate past evolutionary processes, we find that the hypothesis also foreshadows future changes to the evolutionary tree

    Evidence for Positive Selection on a Number of MicroRNA Regulatory Interactions during Recent Human Evolution

    Get PDF
    MicroRNA (miRNA)–mediated gene regulation is of critical functional importance in animals and is thought to be largely constrained during evolution. However, little is known regarding evolutionary changes of the miRNA network and their role in human evolution. Here we show that a number of miRNA binding sites display high levels of population differentiation in humans and thus are likely targets of local adaptation. In a subset we demonstrate that allelic differences modulate miRNA regulation in mammalian cells, including an interaction between miR-155 and TYRP1, an important melanosomal enzyme associated with human pigmentary differences. We identify alternate alleles of TYRP1 that induce or disrupt miR-155 regulation and demonstrate that these alleles are selected with different modes among human populations, causing a strong negative correlation between the frequency of miR-155 regulation of TYRP1 in human populations and their latitude of residence. We propose that local adaptation of microRNA regulation acts as a rheostat to optimize TYRP1 expression in response to differential UV radiation. Our findings illustrate the evolutionary plasticity of the microRNA regulatory network in recent human evolution
    corecore