9 research outputs found

    Defective Sphingosine-1-phosphate metabolism is a druggable target in Huntington's disease

    Get PDF
    Huntington's disease is characterized by a complex and heterogeneous pathogenic profile. Studies have shown that disturbance in lipid homeostasis may represent a critical determinant in the progression of several neurodegenerative disorders. The recognition of perturbed lipid metabolism is only recently becoming evident in HD. In order to provide more insight into the nature of such a perturbation and into the effect its modulation may have in HD pathology, we investigated the metabolism of Sphingosine-1-phosphate (S1P), one of the most important bioactive lipids, in both animal models and patient samples. Here, we demonstrated that S1P metabolism is significantly disrupted in HD even at early stage of the disease and importantly, we revealed that such a dysfunction represents a common denominator among multiple disease models ranging from cells to humans through mouse models. Interestingly, the in vitro anti-apoptotic and the pro-survival actions seen after modulation of S1P-metabolizing enzymes allows this axis to emerge as a new druggable target and unfolds its promising therapeutic potential for the development of more effective and targeted interventions against this incurable condition

    Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Intravenously injected nanopharmaceuticals induce adverse cardiopulmonary reactions in sensitive human subjects and these reactions are reproducible in pigs. The underlying mechanisms are poorly understood, but a role for both the complement system and reactive macrophages has been implicated. Here we show the dominance and importance of early pulmonary intravascular macrophage clearance kinetics in adverse particle-mediated cardiopulmonary distress in pigs and irrespective of complement activation. Delaying particle recognition by macrophages within the first few minutes of injection overcome adverse reactions in pigs. This was achieved by two independent approaches: (i) changing particle geometry from a spherical shape (which trigger cardiopulmonary distress) to either rod- or disk-shape morphology and (ii) by physically adhering spheres to the surface of erythrocytes. These approaches bypasses particle surface engineering approaches to prevent robust macrophage recognition as well as the use of immunological or pharmacological modulators to reduce/overcome nanomedicine related adverse cardiopulmonary distress

    Therapeutic application of histone deacetylase inhibitors for central nervous system disorders

    No full text

    Platinum-Group Metals, Alloys and Compounds in Catalysis

    No full text

    Tackling Flow Stress of Zirconium Alloys

    No full text
    corecore