42 research outputs found

    A systematic review of randomised controlled trials assessing effectiveness of prosthetic and orthotic interventions.

    Get PDF
    BACKGROUND: Assistive products are items which allow older people and people with disabilities to be able to live a healthy, productive and dignified life. It has been estimated that approximately 1.5% of the world's population need a prosthesis or orthosis. OBJECTIVE: The objective of this study was to systematically identify and review the evidence from randomized controlled trials assessing effectiveness and cost-effectiveness of prosthetic and orthotic interventions. METHODS: Literature searches, completed in September 2015, were carried out in fourteen databases between years 1995 and 2015. The search results were independently screened by two reviewers. For the purpose of this manuscript, only randomized controlled trials which examined interventions using orthotic or prosthetic devices were selected for data extraction and synthesis. RESULTS: A total of 342 randomised controlled trials were identified (319 English language and 23 non-English language). Only 4 of these randomised controlled trials examined prosthetic interventions and the rest examined orthotic interventions. These orthotic interventions were categorised based on the medical conditions/injuries of the participants. From these studies, this review focused on the medical condition/injuries with the highest number of randomised controlled trials (osteoarthritis, fracture, stroke, carpal tunnel syndrome, plantar fasciitis, anterior cruciate ligament, diabetic foot, rheumatoid and juvenile idiopathic arthritis, ankle sprain, cerebral palsy, lateral epicondylitis and low back pain). The included articles were assessed for risk of bias using the Cochrane Risk of Bias tool. Details of the clinical population examined, the type of orthotic/prosthetic intervention, the comparator/s and the outcome measures were extracted. Effect sizes and odds ratios were calculated for all outcome measures, where possible. CONCLUSIONS: At present, for prosthetic and orthotic interventions, the scientific literature does not provide sufficient high quality research to allow strong conclusions on their effectiveness and cost-effectiveness

    Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment.

    Get PDF
    Synaptic-vesicle exocytosis is mediated by the vesicular Ca(2+) sensor synaptotagmin-1. Synaptotagmin-1 interacts with the SNARE protein syntaxin-1A and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP2). However, it is unclear how these interactions contribute to triggering membrane fusion. Using PC12 cells from Rattus norvegicus and artificial supported bilayers, we show that synaptotagmin-1 interacts with the polybasic linker region of syntaxin-1A independent of Ca(2+) through PIP2. This interaction allows both Ca(2+)-binding sites of synaptotagmin-1 to bind to phosphatidylserine in the vesicle membrane upon Ca(2+) triggering. We determined the crystal structure of the C2B domain of synaptotagmin-1 bound to phosphoserine, allowing development of a high-resolution model of synaptotagmin bridging two different membranes. Our results suggest that PIP2 clusters organized by syntaxin-1 act as molecular beacons for vesicle docking, with the subsequent Ca(2+) influx bringing the vesicle membrane close enough for membrane fusion

    Multi-protein assemblies underlie the mesoscale organization of the plasma membrane.

    No full text
    Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins. The latter hypothesis has been difficult to test in the past. Here, we introduce several approaches based on click chemistry, through which we study the distribution of membrane proteins in living cells, as well as in membrane sheets. We found that the plasma membrane proteins form multi-protein assemblies that are long lived (minutes), and in which protein diffusion is restricted. The formation of the assemblies is dependent on cholesterol. They are separated and anchored by the actin cytoskeleton. Specific proteins are preferentially located in different regions of the assemblies, from their cores to their edges. We conclude that the assemblies constitute a basic mesoscale feature of the membrane, which affects the patterning of most membrane proteins, and possibly also their activity.peerReviewe
    corecore