2,367 research outputs found
A fixed point formula for the index of multi-centered N=2 black holes
We propose a formula for computing the (moduli-dependent) contribution of
multi-centered solutions to the total BPS index in terms of the
(moduli-independent) indices associated to single-centered solutions. The main
tool in our analysis is the computation of the refined index Tr(-y)^{2J_3} of
configurational degrees of freedom of multi-centered BPS black hole solutions
in N=2 supergravity by localization methods. When the charges carried by the
centers do not allow for scaling solutions (i.e. solutions where a subset of
the centers can come arbitrarily close to each other), the phase space of
classical BPS solutions is compact and the refined index localizes to a finite
set of isolated fixed points under rotations, corresponding to collinear
solutions. When the charges allow for scaling solutions, the phase space is
non-compact but appears to admit a compactification with finite volume and
additional non-isolated fixed points. We give a prescription for determining
the contributions of these fixed submanifolds by means of a `minimal
modification hypothesis', which we prove in the special case of dipole halo
configurations.Comment: 61 pages, 3 figure
Genetically engineered mesenchymal stromal cells produce IL-3 and TPO to further improve human scaffold-based xenograft models
This work was supported by grants from the EU (FP7-PEOPLE-2010-ITN EuroCancer StemCell
Training network) and European Research Council (ERC-2011-StG 281474-huLSCtargeting)
A new ultrafast and high-throughput mass spectrometric approach for the therapeutic drug monitoring of the multi-targeted anti-folate pemetrexed in plasma from lung cancer patients
An analytical assay has been developed and validated for ultrafast and high-throughput mass spectrometric determination of pemetrexed concentrations in plasma using matrix assisted laser desorption/ionization–triple quadrupole–tandem mass spectrometry. Patient plasma samples spiked with the internal standard methotrexate were measured by multiple reaction monitoring. The detection limit was 0.4 fmol/μL, lower limit of quantification was 0.9 fmol/μL, and upper limit of quantification was 60 fmol/μL, respectively. Overall observed pemetrexed concentrations in patient samples ranged between 8.7 (1.4) and 142.7 (20.3) pmol/μL (SD). The newly developed mass spectrometric assay is applicable for (routine) therapeutic drug monitoring of pemetrexed concentrations in plasma from non-small cell lung cancer patients
The origin of human chromosome 2 analyzed by comparative chromosome mapping with a DNA microlibrary
Fluorescencein situ hybridization (FISH) of microlibraries established from distinct chromosome subregions can test the evolutionary conservation of chromosome bands as well as chromosomal rearrangements that occurred during primate evolution and will help to clarify phylogenetic relationships. We used a DNA library established by microdissection and microcloning from the entire long arm of human chromosome 2 for fluorescencein situ hybridization and comparative mapping of the chromosomes of human, great apes (Pan troglodytes, Pan paniscus, Gorilla gorilla, Pongo pygmaeus) and Old World monkeys (Macaca fuscata andCercopithecus aethiops). Inversions were found in the pericentric region of the primate chromosome 2p homologs in great apes, and the hybridization pattern demonstrates the known phylogenetically derived telomere fusion in the line that leads to human chromosome 2. The hybridization of the 2q microlibrary to chromosomes of Old World monkeys gave a different pattern from that in the gorilla and the orang-utan, but a pattern similar to that of chimpanzees. This suggests convergence of chromosomal rearrangements in different phylogenetic lines
Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function
Background: Overactivity and/or dysregulation of the endocannabinoid system (ECS) contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1) in adipocyte function and CB1-receptor deficient (CB1-/-) mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown.
Methods: We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF) or a high-fat/fish oil (HF/FO) diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning.
Results: The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL) activities were also not altered in CB1-/- mice.
Conclusions: These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.
Wall-Crossing from Boltzmann Black Hole Halos
A key question in the study of N=2 supersymmetric string or field theories is
to understand the decay of BPS bound states across walls of marginal stability
in the space of parameters or vacua. By representing the potentially unstable
bound states as multi-centered black hole solutions in N=2 supergravity, we
provide two fully general and explicit formulae for the change in the (refined)
index across the wall. The first, "Higgs branch" formula relies on Reineke's
results for invariants of quivers without oriented loops, specialized to the
Abelian case. The second, "Coulomb branch" formula results from evaluating the
symplectic volume of the classical phase space of multi-centered solutions by
localization. We provide extensive evidence that these new formulae agree with
each other and with the mathematical results of Kontsevich and Soibelman (KS)
and Joyce and Song (JS). The main physical insight behind our results is that
the Bose-Fermi statistics of individual black holes participating in the bound
state can be traded for Maxwell-Boltzmann statistics, provided the (integer)
index \Omega(\gamma) of the internal degrees of freedom carried by each black
hole is replaced by an effective (rational) index \bar\Omega(\gamma)=
\sum_{m|\gamma} \Omega(\gamma/m)/m^2. A similar map also exists for the refined
index. This observation provides a physical rationale for the appearance of the
rational Donaldson-Thomas invariant \bar\Omega(\gamma) in the works of KS and
JS. The simplicity of the wall crossing formula for rational invariants allows
us to generalize the "semi-primitive wall-crossing formula" to arbitrary decays
of the type \gamma\to M\gamma_1+N\gamma_2 with M=2,3.Comment: 71 pages, 1 figure; v3: changed normalisation of symplectic form
3.22, corrected 3.35, other cosmetic change
Gauge-Higgs Unification In Spontaneously Created Fuzzy Extra Dimensions
We propose gauge-Higgs unification in fuzzy extra dimensions as a possible
solution to the Higgs naturalness problem. In our approach, the fuzzy extra
dimensions are created spontaneously as a vacuum solution of certain
four-dimensional gauge theory. As an example, we construct a model which has a
fuzzy torus as its vacuum. The Higgs field in our model is associated with the
Wilson loop wrapped on the fuzzy torus. We show that the quadratic divergence
in the mass of the Higgs field in the one-loop effective potential is absent.
We then argue based on symmetries that the quantum corrections to the Higgs
mass is suppressed including all loop contributions. We also consider a
realization on the worldvolume theory of D3-branes probing orbifold with discrete torsion.Comment: 1+38 pages, 4 figures v2: refs adde
The Gluonic Field of a Heavy Quark in Conformal Field Theories at Strong Coupling
We determine the gluonic field configuration sourced by a heavy quark
undergoing arbitrary motion in N=4 super-Yang-Mills at strong coupling and
large number of colors. More specifically, we compute the expectation value of
the operator tr[F^2+...] in the presence of such a quark, by means of the
AdS/CFT correspondence. Our results for this observable show that signals
propagate without temporal broadening, just as was found for the expectation
value of the energy density in recent work by Hatta et al. We attempt to shed
some additional light on the origin of this feature, and propose a different
interpretation for its physical significance. As an application of our general
results, we examine when the quark undergoes oscillatory motion,
uniform circular motion, and uniform acceleration. Via the AdS/CFT
correspondence, all of our results are pertinent to any conformal field theory
in 3+1 dimensions with a dual gravity formulation.Comment: 1+38 pages, 16 eps figures; v2: completed affiliation; v3: corrected
typo, version to appear in JHE
- …