222 research outputs found

    Statistical modeling of ground motion relations for seismic hazard analysis

    Full text link
    We introduce a new approach for ground motion relations (GMR) in the probabilistic seismic hazard analysis (PSHA), being influenced by the extreme value theory of mathematical statistics. Therein, we understand a GMR as a random function. We derive mathematically the principle of area-equivalence; wherein two alternative GMRs have an equivalent influence on the hazard if these GMRs have equivalent area functions. This includes local biases. An interpretation of the difference between these GMRs (an actual and a modeled one) as a random component leads to a general overestimation of residual variance and hazard. Beside this, we discuss important aspects of classical approaches and discover discrepancies with the state of the art of stochastics and statistics (model selection and significance, test of distribution assumptions, extreme value statistics). We criticize especially the assumption of logarithmic normally distributed residuals of maxima like the peak ground acceleration (PGA). The natural distribution of its individual random component (equivalent to exp(epsilon_0) of Joyner and Boore 1993) is the generalized extreme value. We show by numerical researches that the actual distribution can be hidden and a wrong distribution assumption can influence the PSHA negatively as the negligence of area equivalence does. Finally, we suggest an estimation concept for GMRs of PSHA with a regression-free variance estimation of the individual random component. We demonstrate the advantages of event-specific GMRs by analyzing data sets from the PEER strong motion database and estimate event-specific GMRs. Therein, the majority of the best models base on an anisotropic point source approach. The residual variance of logarithmized PGA is significantly smaller than in previous models. We validate the estimations for the event with the largest sample by empirical area functions. etc

    Understanding single-station ground motion variability and uncertainty (sigma) – Lessons learnt from EUROSEISTEST

    Get PDF
    Accelerometric data from the well-studied valley EUROSEISTEST are used to investigate ground motion uncertainty and variability. We define a simple local ground motion prediction equation (GMPE) and investigate changes in standard deviation (σ) and its components, the between-event variability (τ) and within-event variability (φ). Improving seismological metadata significantly reduces τ (30-50%), which in turn reduces the total σ. Improving site information reduces the systematic site-to-site variability, φS2S (20-30%), in turn reducing φ, and ultimately, σ. Our values of standard deviations are lower than global values from literature, and closer to path-specific than site-specific values. However, our data have insufficient azimuthal coverage for single-path analysis. Certain stations have higher ground-motion variability, possibly due to topography, basin edge or downgoing wave effects. Sensitivity checks show that 3 recordings per event is a sufficient data selection criterion, however, one of the dataset’s advantages is the large number of recordings per station (9-90) that yields good site term estimates. We examine uncertainty components binning our data with magnitude from 0.01 to 2 s; at smaller magnitudes, τ decreases and φSS increases, possibly due to κ and source-site trade-offs Finally, we investigate the alternative approach of computing φSS using existing GMPEs instead of creating an ad hoc local GMPE. This is important where data are insufficient to create one, or when site-specific PSHA is performed. We show that global GMPEs may still capture φSS, provided that: 1. the magnitude scaling errors are accommodated by the event terms; 2. there are no distance scaling errors (use of a regionally applicable model). Site terms (φS2S) computed by different global GMPEs (using different site-proxies) vary significantly, especially for hard-rock sites. This indicates that GMPEs may be poorly constrained where they are sometimes most needed, i.e. for hard rock

    Barriers to adequate follow-up during adjuvant therapy may be important factors in the worse outcome for Black women after breast cancer treatment

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Black women appear to have worse outcome after diagnosis and treatment of breast cancer. It is still unclear if this is because Black race is more often associated with known negative prognostic indicators or if it is an independent prognostic factor. To study this, we analyzed a patient cohort from an urban university medical center where these women made up the majority of the patient population.</p> <p>Methods</p> <p>We used retrospective analysis of a prospectively collected database of breast cancer patients seen from May 1999 to June 2006. Time to recurrence and survival were analyzed using the Kaplan-Meier method, with statistical analysis by chi-square, log rank testing, and the Cox regression model.</p> <p>Results</p> <p>265 female patients were diagnosed with breast cancer during the time period. Fifty patients (19%) had pure DCIS and 215 patients (81%) had invasive disease. Racial and ethnic composition of the entire cohort was as follows: Black (N = 150, 56.6%), Hispanic (N = 83, 31.3%), Caucasian (N = 26, 9.8%), Asian (N = 4, 1.5%), and Arabic (N = 2, 0.8%). For patients with invasive disease, independent predictors of poor disease-free survival included tumor size, node-positivity, incompletion of adjuvant therapy, and Black race. Tumor size, node-positivity, and Black race were independently associated with disease-specific overall survival.</p> <p>Conclusion</p> <p>Worse outcome among Black women appears to be independent of the usual predictors of survival. Further investigation is necessary to identify the cause of this survival disparity. Barriers to completion of standard post-operative treatment regimens may be especially important in this regard.</p

    Defining the Molecular Character of the Developing and Adult Kidney Podocyte

    Get PDF
    BACKGROUND: The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. METHODOLOGY/PRINCIPAL FINDINGS: In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. CONCLUSIONS/SIGNIFICANCE: The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells

    Derivation of consistent hard rock (1000<Vs<3000 m/s) GMPEs from surface and down-hole recordings: Analysis of KiK-net data

    Get PDF
    A key component in seismic hazard assessment is the estimation of ground motion for hard rock sites, either for applications to installations built on this site category, or as an input motion for site response computation. Empirical ground motion prediction equations (GMPEs) are the traditional basis for estimating ground motion while VS30 is the basis to account for site conditions. As current GMPEs are poorly constrained for VS30 larger than 1000 m/s, the presently used approach for estimating hazard on hard rock sites consists of “host-to-target” adjustment techniques based on VS30 and κ0 values. The present study investigates alternative methods on the basis of a KiK-net dataset corresponding to stiff and rocky sites with 500 < VS30 < 1350 m/s. The existence of sensor pairs (one at the surface and one in depth) and the availability of P- and S-wave velocity profiles allow deriving two “virtual” datasets associated to outcropping hard rock sites with VS in the range [1000, 3000] m/s with two independent corrections: 1/down-hole recordings modified from within motion to outcropping motion with a depth correction factor, 2/surface recordings deconvolved from their specific site response derived through 1D simulation. GMPEs with simple functional forms are then developed, including a VS30 site term. They lead to consistent and robust hard-rock motion estimates, which prove to be significantly lower than host-to-target adjustment predictions. The difference can reach a factor up to 3–4 beyond 5 Hz for very hard-rock, but decreases for decreasing frequency until vanishing below 2 Hz

    Renal Thrombotic Microangiopathy in Mice with Combined Deletion of Endocytic Recycling Regulators EHD3 and EHD4

    Get PDF
    Eps15 Homology Domain-containing 3 (EHD3), a member of the EHD protein family that regulates endocytic recycling, is the first protein reported to be specifically expressed in the glomerular endothelium in the kidney; therefore we generated Ehd3–/– mice and assessed renal development and pathology. Ehd3–/– animals showed no overt defects, and exhibited no proteinuria or glomerular pathology. However, as the expression of EHD4, a related family member, was elevated in the glomerular endothelium of Ehd3–/– mice and suggested functional compensation, we generated and analyzed Ehd3–/–; Ehd4–/– mice. These mice were smaller, possessed smaller and paler kidneys, were proteinuric and died between 3–24 weeks of age. Detailed analyses of Ehd3–/–; Ehd4–/– kidneys demonstrated thrombotic microangiopathy (TMA)-like glomerular lesions including thickening and duplication of glomerular basement membrane, endothelial swelling and loss of fenestrations. Other changes included segmental podocyte foot process effacement, mesangial interposition, and abnormal podocytic and mesangial marker expression. The glomerular lesions observed were strikingly similar to those seen in human pre-eclampsia and mouse models of reduced VEGF expression. As altered glomerular endothelial VEGFR2 expression and localization and increased apoptosis was observed in the absence of EHD3 and EHD4, we propose that EHD-mediated endocytic traffic of key surface receptors such as VEGFR2 is essential for physiological control of glomerular function. Furthermore, Ehd3–/–; Ehd4–/– mice provide a unique model to elucidate mechanisms of glomerular endothelial injury which is observed in a wide variety of human renal and extra-renal diseases

    Overexpression of cathepsin K during silica-induced lung fibrosis and control by TGF-β

    Get PDF
    BACKGROUND: Lung fibrosis is characterized by tissue remodeling resulting from an imbalance between synthesis and degradation of extracellular organic matrices. To examine whether cathepsin(s) (Cat) are important in the development of pulmonary fibrosis, we assessed the expression of four Cat known for their collagenolytic activity in a model of silica-induced lung fibrosis. METHODS: Different strains of mice were transorally instilled with 2.5 mg crystalline silica or other particles. Cat expression (Cat K, S, L and B) was quantified in lung tissue and isolated pulmonary cells by quantitative RT-PCR. In vitro, we assessed the effect of different cytokines, involved in lung inflammatory and fibrotic responses, on the expression of Cat K by alveolar macrophages and fibroblasts. RESULTS: In lung tissue, Cat K transcript was the most strongly upregulated in response to silica, and this upregulation was intimately related to the fibrotic process. In mouse strains known for their differential response to silica, we showed that the level of Cat K expression following silica treatment was inversely related to the level of TGF-β expression and the susceptibility of these strains to develop fibrosis. Pulmonary macrophages and fibroblasts were identified as Cat K overproducing cells in the lung of silicotic mice. In vitro, Cat K was downregulated in mouse and human lung fibroblasts by the profibrotic growth factor TGF-β1. CONCLUSION: Altogether, these data suggest that while Cat K may contribute to control lung fibrosis, TGF-β appears to limit its overexpression in response to silica particles

    From little things, big things grow: trends and fads in 110 years of Australian ornithology

    Full text link
    Publishing histories can reveal changes in ornithological effort, focus or direction through time. This study presents a bibliometric content analysis of Emu (1901&ndash;2011) which revealed 115 trends (long-term changes in publication over time) and 18 fads (temporary increases in publication activity) from the classification of 9,039 articles using 128 codes organised into eight categories (author gender, author affiliation, article type, subject, main focus, main method, geographical scale and geographical location). Across 110 years, private authorship declined, while publications involving universities and multiple institutions increased; from 1960, female authorship increased. Over time, question-driven studies and incidental observations increased and decreased in frequency, respectively. Single species and &lsquo;taxonomic group&rsquo; subjects increased while studies of birds at specific places decreased. The focus of articles shifted from species distribution and activities of the host organisation to breeding, foraging and other biological/ecological topics. Site- and Australian-continental-scales slightly decreased over time; non-Australian studies increased from the 1970s. A wide variety of fads occurred (e.g. articles on bird distribution, 1942&ndash;1951, and using museum specimens, 1906&ndash;1913) though the occurrence of fads decreased over time. Changes over time are correlated with technological, theoretical, social and institutional changes, and suggest ornithological priorities, like those of other scientific disciplines, are temporally labil
    corecore