236 research outputs found
Implementation of a Quantum Search Algorithm on a Nuclear Magnetic Resonance Quantum Computer
We demonstrate an implementation of a quantum search algorithm on a two qubit
NMR quantum computer based on cytosine.Comment: Six pages, three figure
Quiet SDS Josephson Junctions for Quantum Computing
Unconventional superconductors exhibit an order parameter symmetry lower than
the symmetry of the underlying crystal lattice. Recent phase sensitive
experiments on YBCO single crystals have established the d-wave nature of the
cuprate materials, thus identifying unambiguously the first unconventional
superconductor. The sign change in the order parameter can be exploited to
construct a new type of s-wave - d-wave - s-wave Josephson junction exhibiting
a degenerate ground state and a double-periodic current-phase characteristic.
Here we discuss how to make use of these special junction characteristics in
the construction of a quantum computer. Combining such junctions together with
a usual s-wave link into a SQUID loop we obtain what we call a `quiet' qubit
--- a solid state implementation of a quantum bit which remains optimally
isolated from its environment.Comment: 4 pages, 2 ps-figure
Topologically protected quantum bits from Josephson junction arrays
All physical implementations of quantum bits (qubits), carrying the
information and computation in a putative quantum computer, have to meet the
conflicting requirements of environmental decoupling while remaining
manipulable through designed external signals. Proposals based on quantum
optics naturally emphasize the aspect of optimal isolation, while those
following the solid state route exploit the variability and scalability of
modern nanoscale fabrication techniques. Recently, various designs using
superconducting structures have been successfully tested for quantum coherent
operation, however, the ultimate goal of reaching coherent evolution over
thousands of elementary operations remains a formidable task. Protecting qubits
from decoherence by exploiting topological stability, a qualitatively new
proposal due to Kitaev, holds the promise for long decoherence times, but its
practical physical implementation has remained unclear so far. Here, we show
how strongly correlated systems developing an isolated two-fold degenerate
quantum dimer liquid groundstate can be used in the construction of
topologically stable qubits and discuss their implementation using Josephson
junction arrays.Comment: 6 pages, 4 figure
Architecture for a large-scale ion-trap quantum computer
Among the numerous types of architecture being explored for quantum computers are systems utilizing ion traps, in which quantum bits (qubits) are formed from the electronic states of trapped ions and coupled through the Coulomb interaction. Although the elementary requirements for quantum computation have been demonstrated in this system, there exist theoretical and technical obstacles to scaling up the approach to large numbers of qubits. Therefore, recent efforts have been concentrated on using quantum communication to link a number of small ion-trap quantum systems. Developing the array-based approach, we show how to achieve massively parallel gate operation in a large-scale quantum computer, based on techniques already demonstrated for manipulating small quantum registers. The use of decoherence-free subspaces significantly reduces decoherence during ion transport, and removes the requirement of clock synchronization between the interaction regions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62880/1/nature00784.pd
A Single-Photon Server with Just One Atom
Neutral atoms are ideal objects for the deterministic processing of quantum
information. Entanglement operations have been performed by photon exchange or
controlled collisions. Atom-photon interfaces were realized with single atoms
in free space or strongly coupled to an optical cavity. A long standing
challenge with neutral atoms, however, is to overcome the limited observation
time. Without exception, quantum effects appeared only after ensemble
averaging. Here we report on a single-photon source with one-and-only-one atom
quasi permanently coupled to a high-finesse cavity. Quasi permanent refers to
our ability to keep the atom long enough to, first, quantify the
photon-emission statistics and, second, guarantee the subsequent performance as
a single-photon server delivering up to 300,000 photons for up to 30 seconds.
This is achieved by a unique combination of single-photon generation and atom
cooling. Our scheme brings truly deterministic protocols of quantum information
science with light and matter within reach.Comment: 4 pages, 3 figure
Quantum Interference of Photon Pairs from Two Trapped Atomic Ions
We collect the fluorescence from two trapped atomic ions, and measure quantum
interference between photons emitted from the ions. The interference of two
photons is a crucial component of schemes to entangle atomic qubits based on a
photonic coupling. The ability to preserve the generated entanglement and to
repeat the experiment with the same ions is necessary to implement entangling
quantum gates between atomic qubits, and allows the implementation of protocols
to efficiently scale to larger numbers of atomic qubits.Comment: 4 pages, 4 figure
Topics in Quantum Computers
I provide an introduction to quantum computers, describing how they might be
realized using language accessible to a solid state physicist. A listing of the
minimal requirements for creating a quantum computer is given. I also discuss
several recent developments in the area of quantum error correction, a subject
of importance not only to quantum computation, but also to some aspects of the
foundations of quantum theory.Comment: 22 pages, Latex, 1 eps figure, Paper to be published in "Mesoscopic
Electron Transport", edited by L. Kowenhoven, G. Schoen and L. Sohn, NATO ASI
Series E, Kluwer Ac. Publ., Dordrecht. v2: typos in refrences fixe
Heralded single photon absorption by a single atom
The emission and absorption of single photons by single atomic particles is a
fundamental limit of matter-light interaction, manifesting its quantum
mechanical nature. At the same time, as a controlled process it is a key
enabling tool for quantum technologies, such as quantum optical information
technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission
and absorption will allow implementing quantum networking scenarios [1, 7, 8,
9], where photonic communication of quantum information is interfaced with its
local processing in atoms. In studies of single-photon emission, recent
progress includes control of the shape, bandwidth, frequency, and polarization
of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the
demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption
of a single photon by a single atom is much less investigated; proposals exist
but only very preliminary steps have been taken experimentally such as
detecting the attenuation and phase shift of a weak laser beam by a single atom
[21, 22], and designing an optical system that covers a large fraction of the
full solid angle [23, 24, 25]. Here we report the interaction of single
heralded photons with a single trapped atom. We find strong correlations of the
detection of a heralding photon with a change in the quantum state of the atom
marking absorption of the quantum-correlated heralded photon. In coupling a
single absorber with a quantum light source, our experiment demonstrates
previously unexplored matter-light interaction, while opening up new avenues
towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure
Preparation and control of a cavity-field state through atom-driven field interaction: towards long-lived mesoscopic states
The preparation of mesoscopic states of the radiation and matter fields
through atom-field interactions has been achieved in recent years and employed
for a range of striking applications in quantum optics. Here we present a
technique for the preparation and control of a cavity mode which, besides
interacting with a two-level atom, is simultaneously submitted to linear and
parametric amplification processes. The role of the amplification-controlling
fields in the achievement of real mesoscopic states, is to produce
highly-squeezed field states and, consequently, to increase both: i) the
distance in phase space between the components of the prepared superpositions
and ii) the mean photon number of such superpositions. When submitting the
squeezed superposition states to the action of similarly squeezed reservoirs,
we demonstrate that under specific conditions the decoherence time of the
states becomes independent of both the distance in phase space between their
components and their mean photon number. An explanation is presented to support
this remarkable result, together with a discussion on the experimental
implementation of our proposal. We also show how to produce number states with
fidelities higher than those derived as circular states
Constraining cosmic scatter in the Galactic halo through a differential analysis of metal-poor stars
© ESO 2017.Context. The chemical abundances of metal-poor halo stars are important to understanding key aspects of Galactic formation and evolution. Aims. We aim to constrain Galactic chemical evolution with precise chemical abundances of metal-poor stars (−2.8 ≤ [Fe/H] ≤ −1.5). Methods. Using high resolution and high S/N UVES spectra of 23 stars and employing the differential analysis technique we estimated stellar parameters and obtained precise LTE chemical abundances. Results. We present the abundances of Li, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Zn, Sr, Y, Zr, and Ba. The differential technique allowed us to obtain an unprecedented low level of scatter in our analysis, with standard deviations as low as 0.05 dex, and mean errors as low as 0.05 dex for [X/Fe]. Conclusions. By expanding our metallicity range with precise abundances from other works, we were able to precisely constrain Galactic chemical evolution models in a wide metallicity range (−3.6 ≤ [Fe/H] ≤ −0.4). The agreements and discrepancies found are key for further improvement of both models and observations. We also show that the LTE analysis of Cr II is a much more reliable source of abundance for chromium, as Cr I has important NLTE effects. These effects can be clearly seen when we compare the observed abundances of Cr I and Cr II with GCE models. While Cr I has a clear disagreement between model and observations, Cr II is very well modeled. We confirm tight increasing trends of Co and Zn toward lower metallicities, and a tight flat evolution of Ni relative to Fe. Our results strongly suggest inhomogeneous enrichment from hypernovae. Our precise stellar parameters results in a low star-to-star scatter (0.04 dex) in the Li abundances of our sample, with a mean value about 0.4 dex lower than the prediction from standard Big Bang nucleosynthesis; we also study the relation between lithium depletion and stellar mass, but it is difficult to assess a correlation due to the limited mass range. We find two blue straggler stars, based on their very depleted Li abundances. One of them shows intriguing abundance anomalies, including a possible zinc enhancement, suggesting that zinc may have been also produced by a former AGB companion.Peer reviewedFinal Published versio
- …