2,543 research outputs found

    Study on the pre-treatment of oxidized zinc ore prior to flotation

    Get PDF
    The pre-treatment of zinc oxide bearing ores with high slime content is important to ensure that resources are utilized optimally. This paper reports an improved process using hydrocyclone de-sliming, dispersion reagents, and magnetic removal of iron minerals for the pre-treatment of zinc oxide ore with a high slime and iron content, and the benefits compared to traditional technologies are shown. In addition, this paper investigates the damage related to fine slime and iron during zinc oxide flotation, the necessity of using hydrocyclone de-sliming together with dispersion reagents to alleviate the influence of slime, and interactions among hydrocyclone de-sliming, reagent dispersion, and magnetic iron removal. Results show that under optimized operating conditions the entire beneficiation technology results in a flotation concentrate with a Zn grade of 34.66% and a recovery of 73.41%

    The chromosome content and genotype of two wheat cell lines and of their somatic fusion product with oat

    Get PDF
    Somatic hybridization seeks to genetically combine phylogenetically distant parents. An effective system has been established in bread wheat (Triticum aestivum L.) involving protoplasts from a non-totipotent cell line adapted to in vitro culture (T1) in combination with totipotent protoplasts harvested from embryogenic calli (T2). Here, we report the karyotype and genotype of T1 and T2. Line T1 carries nine A (A-genome of wheat), seven B (B-genome of wheat) and eight D (D-genome of wheat) genome chromosomes, while T2 cells have 12 A, 10 B and 12 D genome chromosomes. Rates of chromosome aberration in the B- and D-genomes were more than 25%, higher than in the A-genome. DNA deletion rates were 55.6% in T1 and 19.4% in T2, and DNA variation rates were 8.3% in T1 and 13.9% in T2. Rate of DNA elimination was B- > D- > A-genome in both T1 and T2. The same set of cytological and genetic assays was applied to a derivative of the somatic fusion between protoplasts of T1, T2 and oat (Avena sativa L.). The regenerant plants were near euploid with respect to their wheat complement. Six wheat chromosome arms—4AL, 3BS, 4BL, 3DS, 6DL and 7DL—carried small introgressed segments of oat chromatin. A genotypic analysis of the hybrid largely confirmed this cytologically-based diagnosis

    Shape controlled synthesis of PbS nanocrystals by a solvothermal-microemulsion approach

    Get PDF
    Shape controlled synthesis of PbS nanoparticles, cubes, and nanowires has been realized by a so-called solvothermal-microemulsion technique in a sodium dodecyl sulfate (SDS)/hexane/hexanol/water microemulsion system using different sulfur source. The effect of different sulfur source and temperature on the shape of PbS nanocrystallites was investigated. The results demonstrated that the combination of solvothermal process and microemulsion technique could provide a useful tool for the synthesis of other nanocrysals with unusual shape and structures. (C) 2004 Published by Elsevier B.V

    Electrical resistance of CNT-PEEK composites under compression at different temperatures

    Get PDF
    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure

    MegaSNPHunter: a learning approach to detect disease predisposition SNPs and high level interactions in genome wide association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The interactions of multiple single nucleotide polymorphisms (SNPs) are highly hypothesized to affect an individual's susceptibility to complex diseases. Although many works have been done to identify and quantify the importance of multi-SNP interactions, few of them could handle the genome wide data due to the combinatorial explosive search space and the difficulty to statistically evaluate the high-order interactions given limited samples.</p> <p>Results</p> <p>Three comparative experiments are designed to evaluate the performance of MegaSNPHunter. The first experiment uses synthetic data generated on the basis of epistasis models. The second one uses a genome wide study on Parkinson disease (data acquired by using Illumina HumanHap300 SNP chips). The third one chooses the rheumatoid arthritis study from Wellcome Trust Case Control Consortium (WTCCC) using Affymetrix GeneChip 500K Mapping Array Set. MegaSNPHunter outperforms the best solution in this area and reports many potential interactions for the two real studies.</p> <p>Conclusion</p> <p>The experimental results on both synthetic data and two real data sets demonstrate that our proposed approach outperforms the best solution that is currently available in handling large-scale SNP data both in terms of speed and in terms of detection of potential interactions that were not identified before. To our knowledge, MegaSNPHunter is the first approach that is capable of identifying the disease-associated SNP interactions from WTCCC studies and is promising for practical disease prognosis.</p

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    Hemorrhage of brain metastasis from non-small cell lung cancer post gefitinib therapy: two case reports and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gefitinib is one of the small molecule inhibitors of epidermal growth factor receptor tyrosine kinase (EGFR TKIs). Clinical trials have demonstrated it is effective for treatment of a subset of patients with advanced non-small cell lung cancer (NSCLC). Gefitinib has been generally considered to be a relatively safe agent. Besides a small proportion of fatal interstitial pneumonia, the common adverse drug reactions of gefitinib include diarrhea and skin rash, which are generally mild and reversible. Herein, we report the first two cases of brain metastasis hemorrhage that might be involved with the use of gefitinib.</p> <p>Case presentation</p> <p>Two patients with brain metastasis from NSCLC developed brain hemorrhage after gefitinib therapy. The hemorrhage in one case occurred one month after gefitinib combined with whole brain radiation therapy (WBRT), and in the another case hemorrhage developed slowly within brain metastases eight months post gefitinib monotherapy for diffuse pulmonary metastasis from a lung cancer undergone surgical removal previously.</p> <p>Conclusion</p> <p>We speculate brain hemorrhage could be one of the adverse drug reactions of gefitinib treatment for NSCLC and suggest clinicians be aware of this possible rare entity. More data are needed to confirm our findings, especially when gefitinib is used in the settings of brain metastases from NSCLC or other origins.</p

    A novel class of microRNA-recognition elements that function only within open reading frames.

    Get PDF
    MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
    corecore