77 research outputs found

    Methadone, Buprenorphine, and Street Drug Interactions with Antiretroviral Medications

    Get PDF
    While street drugs appear unlikely to alter the metabolism of antiretroviral (ARV) medications, several ARVs may induce or inhibit metabolism of various street drugs. However, research on these interactions is limited. Case reports have documented life-threatening overdoses of ecstasy and gamma-hydroxybutyrate after starting ritonavir, an ARV that inhibits several metabolic enzymes. For opioid addiction, methadone or buprenorphine are the treatments of choice. Because a number of ARVs decrease or increase methadone levels, patients should be monitored for methadone withdrawal or toxicity when they start or stop ARVs. Most ARVs do not cause buprenorphine withdrawal or toxicity, even if they alter buprenorphine levels, with rare exceptions to date including atazanavir/ritonavir associated with significant increases in buprenorphine and adverse events related to sedation and mental status changes in some cases. There are newer medications yet to be studied with methadone or buprenorphine. Further, there are many frequently used medications in treatment of complications of HIV disease that have not been studied. There is need for continuing research to define these drug interactions and their clinical significance

    Bimodal action of the flavonoid quercetin on basophil function: an investigation of the putative biochemical targets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flavonoids, a large group of polyphenolic metabolites derived from plants have received a great deal of attention over the last several decades for their properties in inflammation and allergy. Quercetin, the most abundant of plant flavonoids, exerts a modulatory action at nanomolar concentrations on human basophils. As this mechanism needs to be elucidated, in this study we focused the possible signal transduction pathways which may be affected by this compound. Methods: K2-EDTA derived leukocyte buffy coats enriched in basophil granulocytes were treated with different concentrations of quercetin and triggered with anti-IgE, fMLP, the calcium ionophore A23187 and the phorbol ester PMA in different experimental conditions. Basophils were captured in a flow cytometry analysis as CD123bright/HLADRnon expressing cells and fluorescence values of the activation markers CD63-FITC or CD203c-PE were used to produce dose response curves. The same population was assayed for histamine release.</p> <p>Results</p> <p>Quercetin inhibited the expression of CD63 and CD203c and the histamine release in basophils activated with anti-IgE or with the ionophore: the IC50 in the anti-IgE model was higher than in the ionophore model and the effects were more pronounced for CD63 than for CD203c. Nanomolar concentrations of quercetin were able to prime both markers expression and histamine release in the fMLP activation model while no effect of quercetin was observed when basophils were activated with PMA. The specific phosphoinositide-3 kinase (PI3K) inhibitor wortmannin exhibited the same behavior of quercetin in anti-IgE and fMLP activation, thus suggesting a role for PI3K involvement in the priming mechanism.</p> <p>Conclusions</p> <p>These results rule out a possible role of protein kinase C in the complex response of basophil to quercetin, while indirectly suggest PI3K as the major intracellular target of this compound also in human basophils.</p

    Molecular pathways involved in the synergistic interaction of the PKCβ inhibitor enzastaurin with the antifolate pemetrexed in non-small cell lung cancer cells

    Get PDF
    Conventional regimens have limited impact against non-small cell lung cancer (NSCLC). Current research is focusing on multiple pathways as potential targets, and this study investigated molecular mechanisms underlying the combination of the PKCβ inhibitor enzastaurin with the multitargeted antifolate pemetrexed in the NSCLC cells SW1573 and A549. Pharmacologic interaction was studied using the combination-index method, while cell cycle, apoptosis induction, VEGF secretion and ERK1/2 and Akt phosphorylation were studied by flow cytometry and ELISAs. Reverse transcription–PCR, western blot and activity assays were performed to assess whether enzastaurin influenced thymidylate synthase (TS) and the expression of multiple targets involved in cancer signaling and cell cycle distribution. Enzastaurin-pemetrexed combination was highly synergistic and significantly increased apoptosis. Enzastaurin reduced both phosphoCdc25C, resulting in G2/M checkpoint abrogation and apoptosis induction in pemetrexed-damaged cells, and GSK3β and Akt phosphorylation, which was additionally reduced by drug combination (−58% in A549). Enzastaurin also significantly reduced pemetrexed-induced upregulation of TS expression, possibly through E2F-1 reduction, whereas the combination decreased TS in situ activity (>50% in both cell lines) and VEGF secretion. The effects of enzastaurin on signaling pathways involved in cell cycle control, apoptosis and angiogenesis, as well as on the expression of genes involved in pemetrexed activity provide a strong experimental basis to their evaluation as pharmacodynamic markers in clinical trials of enzastaurin-pemetrexed combination in NSCLC patients

    Coupling and uncoupling mechanisms in the methoxythreonine mutant of cytochrome P450cam: a quantum mechanical/molecular mechanical study

    Get PDF
    The Thr252 residue plays a vital role in the catalytic cycle of cytochrome P450cam during the formation of the active species (Compound I) from its precursor (Compound 0). We investigate the effect of replacing Thr252 by methoxythreonine (MeO-Thr) on this protonation reaction (coupling) and on the competing formation of the ferric resting state and H2O2 (uncoupling) by combined quantum mechanical/molecular mechanical (QM/MM) methods. For each reaction, two possible mechanisms are studied, and for each of these the residues Asp251 and Glu366 are considered as proton sources. The computed QM/MM barriers indicate that uncoupling is unfavorable in the case of the Thr252MeO-Thr mutant, whereas there are two energetically feasible proton transfer pathways for coupling. The corresponding rate-limiting barriers for the formation of Compound I are higher in the mutant than in the wild-type enzyme. These findings are consistent with the experimental observations that the Thr252MeO-Thr mutant forms the alcohol product exclusively (via Compound I), but at lower reaction rates compared with the wild-type enzyme

    Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials.

    Get PDF
    BACKGROUND: The ChAdOx1 nCoV-19 (AZD1222) vaccine has been approved for emergency use by the UK regulatory authority, Medicines and Healthcare products Regulatory Agency, with a regimen of two standard doses given with an interval of 4-12 weeks. The planned roll-out in the UK will involve vaccinating people in high-risk categories with their first dose immediately, and delivering the second dose 12 weeks later. Here, we provide both a further prespecified pooled analysis of trials of ChAdOx1 nCoV-19 and exploratory analyses of the impact on immunogenicity and efficacy of extending the interval between priming and booster doses. In addition, we show the immunogenicity and protection afforded by the first dose, before a booster dose has been offered. METHODS: We present data from three single-blind randomised controlled trials-one phase 1/2 study in the UK (COV001), one phase 2/3 study in the UK (COV002), and a phase 3 study in Brazil (COV003)-and one double-blind phase 1/2 study in South Africa (COV005). As previously described, individuals 18 years and older were randomly assigned 1:1 to receive two standard doses of ChAdOx1 nCoV-19 (5 × 1010 viral particles) or a control vaccine or saline placebo. In the UK trial, a subset of participants received a lower dose (2·2 × 1010 viral particles) of the ChAdOx1 nCoV-19 for the first dose. The primary outcome was virologically confirmed symptomatic COVID-19 disease, defined as a nucleic acid amplification test (NAAT)-positive swab combined with at least one qualifying symptom (fever ≥37·8°C, cough, shortness of breath, or anosmia or ageusia) more than 14 days after the second dose. Secondary efficacy analyses included cases occuring at least 22 days after the first dose. Antibody responses measured by immunoassay and by pseudovirus neutralisation were exploratory outcomes. All cases of COVID-19 with a NAAT-positive swab were adjudicated for inclusion in the analysis by a masked independent endpoint review committee. The primary analysis included all participants who were SARS-CoV-2 N protein seronegative at baseline, had had at least 14 days of follow-up after the second dose, and had no evidence of previous SARS-CoV-2 infection from NAAT swabs. Safety was assessed in all participants who received at least one dose. The four trials are registered at ISRCTN89951424 (COV003) and ClinicalTrials.gov, NCT04324606 (COV001), NCT04400838 (COV002), and NCT04444674 (COV005). FINDINGS: Between April 23 and Dec 6, 2020, 24 422 participants were recruited and vaccinated across the four studies, of whom 17 178 were included in the primary analysis (8597 receiving ChAdOx1 nCoV-19 and 8581 receiving control vaccine). The data cutoff for these analyses was Dec 7, 2020. 332 NAAT-positive infections met the primary endpoint of symptomatic infection more than 14 days after the second dose. Overall vaccine efficacy more than 14 days after the second dose was 66·7% (95% CI 57·4-74·0), with 84 (1·0%) cases in the 8597 participants in the ChAdOx1 nCoV-19 group and 248 (2·9%) in the 8581 participants in the control group. There were no hospital admissions for COVID-19 in the ChAdOx1 nCoV-19 group after the initial 21-day exclusion period, and 15 in the control group. 108 (0·9%) of 12 282 participants in the ChAdOx1 nCoV-19 group and 127 (1·1%) of 11 962 participants in the control group had serious adverse events. There were seven deaths considered unrelated to vaccination (two in the ChAdOx1 nCov-19 group and five in the control group), including one COVID-19-related death in one participant in the control group. Exploratory analyses showed that vaccine efficacy after a single standard dose of vaccine from day 22 to day 90 after vaccination was 76·0% (59·3-85·9). Our modelling analysis indicated that protection did not wane during this initial 3-month period. Similarly, antibody levels were maintained during this period with minimal waning by day 90 (geometric mean ratio [GMR] 0·66 [95% CI 0·59-0·74]). In the participants who received two standard doses, after the second dose, efficacy was higher in those with a longer prime-boost interval (vaccine efficacy 81·3% [95% CI 60·3-91·2] at ≥12 weeks) than in those with a short interval (vaccine efficacy 55·1% [33·0-69·9] at <6 weeks). These observations are supported by immunogenicity data that showed binding antibody responses more than two-fold higher after an interval of 12 or more weeks compared with an interval of less than 6 weeks in those who were aged 18-55 years (GMR 2·32 [2·01-2·68]). INTERPRETATION: The results of this primary analysis of two doses of ChAdOx1 nCoV-19 were consistent with those seen in the interim analysis of the trials and confirm that the vaccine is efficacious, with results varying by dose interval in exploratory analyses. A 3-month dose interval might have advantages over a programme with a short dose interval for roll-out of a pandemic vaccine to protect the largest number of individuals in the population as early as possible when supplies are scarce, while also improving protection after receiving a second dose. FUNDING: UK Research and Innovation, National Institutes of Health Research (NIHR), The Coalition for Epidemic Preparedness Innovations, the Bill & Melinda Gates Foundation, the Lemann Foundation, Rede D'Or, the Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Small asymmetric anthracene-thiophene compounds as organic thin-film transistors

    No full text
    Anthracene and thiophene compounds are promising materials for OTFTs. We report here, the synthesis, as well as the physical, thermal, and optoelectronic properties of alkyl-substituted asymmetric anthracene-thiophene compounds connected by a bridged triple bond. The target molecules were synthesized using 2-bromoanthracene as the starting material, and the proceeding reactions included alkylation, bromination, and the Sonogashira coupling reaction. The synthesized compounds were both thermally and electrochemically stable. Among the synthesized compounds, HTEA (7a) and DTEA (7b) showed mobility and on/off ratio values of 1.3x10(-1) cm(2)/V s, 2.6 x 10(6) and 2.0x10(-2) cm(2)/V s, 1.0x10(6), respectively. (C) 2013 Elsevier Ltd. All rights reserved.X111111sciescopu
    corecore