49 research outputs found

    Microfluidic impedance biosensors for monitoring a single and multiple cancer cells in anticancer drug treatments

    Get PDF
    In this work, we present a novel microfluidic impedance biosensor chip for trapping both a single and multiple cancer cells and monitoring their response to the anti-cancer drug treatment. By designing different sizes of working microelectrodes together with the V-shaped cell capture structures, a single or multiple cells are trapped on the microelectrodes surfaces. In addition, by utilizing the passive pumping method, cells can be trapped and positioned inside the microchannels without the need of using the outer micro pump or syringe. The impedance change induced by the response of cells to the anticancer drug Cisplatin treatment was successfully recorded. The proposed biosensor chip has a great potential for applications in cancer cell research, drug screening, and quantification of cancer cells from various tumor stages. The results of this study open potential research collaborations about development of cost-effective devices and lab-on-chips for early disease detection, studies of cancerous cells and their response to anti-cancer drugs to optimize cancer treatments, characterisation of mechanical properties of cells, new drug delivery mechanisms, and micro and nano manufacturing

    Social research on neglected diseases of poverty: Continuing and emerging themes

    Get PDF
    Copyright: © 2009 Manderson et al.Neglected tropical diseases (NTDs) exist and persist for social and economic reasons that enable the vectors and pathogens to take advantage of changes in the behavioral and physical environment. Persistent poverty at household, community, and national levels, and inequalities within and between sectors, contribute to the perpetuation and re-emergence of NTDs. Changes in production and habitat affect the physical environment, so that agricultural development, mining and forestry, rapid industrialization, and urbanization all result in changes in human uses of the environment, exposure to vectors, and vulnerability to infection. Concurrently, political instability and lack of resources limit the capacity of governments to manage environments, control disease transmission, and ensure an effective health system. Social, cultural, economic, and political factors interact and influence government capacity and individual willingness to reduce the risks of infection and transmission, and to recognize and treat disease. Understanding the dynamic interaction of diverse factors in varying contexts is a complex task, yet critical for successful health promotion, disease prevention, and disease control. Many of the research techniques and tools needed for this purpose are available in the applied social sciences. In this article we use this term broadly, and so include behavioral, population and economic social sciences, social and cultural epidemiology, and the multiple disciplines of public health, health services, and health policy and planning. These latter fields, informed by foundational social science theory and methods, include health promotion, health communication, and heath education

    A Research Agenda for Helminth Diseases of Humans: Towards Control and Elimination

    Get PDF
    Human helminthiases are of considerable public health importance in sub-Saharan Africa, Asia, and Latin America. The acknowledgement of the disease burden due to helminth infections, the availability of donated or affordable drugs that are mostly safe and moderately efficacious, and the implementation of viable mass drug administration (MDA) interventions have prompted the establishment of various large-scale control and elimination programmes. These programmes have benefited from improved epidemiological mapping of the infections, better understanding of the scope and limitations of currently available diagnostics and of the relationship between infection and morbidity, feasibility of community-directed or school-based interventions, and advances in the design of monitoring and evaluation (M&E) protocols. Considerable success has been achieved in reducing morbidity or suppressing transmission in a number of settings, whilst challenges remain in many others. Some of the obstacles include the lack of diagnostic tools appropriate to the changing requirements of ongoing interventions and elimination settings; the reliance on a handful of drugs about which not enough is known regarding modes of action, modes of resistance, and optimal dosage singly or in combination; the difficulties in sustaining adequate coverage and compliance in prolonged and/or integrated programmes; an incomplete understanding of the social, behavioural, and environmental determinants of infection; and last, but not least, very little investment in research and development (R&D). The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to undertake a comprehensive review of recent advances in helminthiases research, identify research gaps, and rank priorities for an R&D agenda for the control and elimination of these infections. This review presents the processes undertaken to identify and rank ten top research priorities; discusses the implications of realising these priorities in terms of their potential for improving global health and achieving the Millennium Development Goals (MDGs); outlines salient research funding needs; and introduces the series of reviews that follow in this PLoS Neglected Tropical Diseases collection, “A Research Agenda for Helminth Diseases of Humans.

    A Research Agenda for Helminth Diseases of Humans: Social Ecology, Environmental Determinants, and Health Systems

    Get PDF
    In this paper, the Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), with the mandate to review helminthiases research and identify research priorities and gaps, focuses on the environmental, social, behavioural, and political determinants of human helminth infections and outlines a research and development agenda for the socioeconomic and health systems research required for the development of sustainable control programmes. Using Stockols' social-ecological approach, we describe the role of various social (poverty, policy, stigma, culture, and migration) and environmental determinants (the home environment, water resources development, and climate change) in the perpetuation of helminthic diseases, as well as their impact as contextual factors on health promotion interventions through both the regular and community-based health systems. We examine these interactions in regard to community participation, intersectoral collaboration, gender, and possibilities for upscaling helminthic disease control and elimination programmes within the context of integrated and interdisciplinary approaches. The research agenda summarises major gaps that need to be addressed

    Effects of Hepatocyte CD14 Upregulation during Cholestasis on Endotoxin Sensitivity

    Get PDF
    Cholestasis is frequently related to endotoxemia and inflammatory response. Our previous investigation revealed a significant increase in plasma endotoxin and CD14 levels during biliary atresia. We therefore propose that lipopolysacharides (LPS) may stimulate CD14 production in liver cells and promote the removal of endotoxins. The aims of this study are to test the hypothesis that CD14 is upregulated by LPS and investigate the pathophysiological role of CD14 production during cholestasis. Using Western blotting, qRT-PCR, and promoter activity assay, we demonstrated that LPS was associated with a significant increase in CD14 and MD2 protein and mRNA expression and CD14 promoter activity in C9 rat hepatocytes but not in the HSC-T6 hepatic stellate cell line in vitro. To correlate CD14 expression and endotoxin sensitivity, in vivo biliary LPS administration was performed on rats two weeks after they were subjected to bile duct ligation (BDL) or a sham operation. CD14 expression and endotoxin levels were found to significantly increase after LPS administration in BDL rats. These returned to basal levels after 24 h. In contrast, although endotoxin levels were increased in sham-operated rats given LPS, no increase in CD14 expression was observed. However, mortality within 24 h was more frequent in the BDL animals than in the sham-operated group. In conclusion, cholestasis and LPS stimulation were here found to upregulate hepatic CD14 expression, which may have led to increased endotoxin sensitivity and host proinflammatory reactions, causing organ failure and death in BDL rats

    A Research Agenda for Helminth Diseases of Humans: Intervention for Control and Elimination

    Get PDF
    Recognising the burden helminth infections impose on human populations, and particularly the poor, major intervention programmes have been launched to control onchocerciasis, lymphatic filariasis, soil-transmitted helminthiases, schistosomiasis, and cysticercosis. The Disease Reference Group on Helminth Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR), was given the mandate to review helminthiases research and identify research priorities and gaps. A summary of current helminth control initiatives is presented and available tools are described. Most of these programmes are highly dependent on mass drug administration (MDA) of anthelmintic drugs (donated or available at low cost) and require annual or biannual treatment of large numbers of at-risk populations, over prolonged periods of time. The continuation of prolonged MDA with a limited number of anthelmintics greatly increases the probability that drug resistance will develop, which would raise serious problems for continuation of control and the achievement of elimination. Most initiatives have focussed on a single type of helminth infection, but recognition of co-endemicity and polyparasitism is leading to more integration of control. An understanding of the implications of control integration for implementation, treatment coverage, combination of pharmaceuticals, and monitoring is needed. To achieve the goals of morbidity reduction or elimination of infection, novel tools need to be developed, including more efficacious drugs, vaccines, and/or antivectorial agents, new diagnostics for infection and assessment of drug efficacy, and markers for possible anthelmintic resistance. In addition, there is a need for the development of new formulations of some existing anthelmintics (e.g., paediatric formulations). To achieve ultimate elimination of helminth parasites, treatments for the above mentioned helminthiases, and for taeniasis and food-borne trematodiases, will need to be integrated with monitoring, education, sanitation, access to health services, and where appropriate, vector control or reduction of the parasite reservoir in alternative hosts. Based on an analysis of current knowledge gaps and identification of priorities, a research and development agenda for intervention tools considered necessary for control and elimination of human helminthiases is presented, and the challenges to be confronted are discussed
    corecore