128 research outputs found

    Memento for interprofessional learning

    Get PDF

    A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal

    Get PDF
    The classification of neuroendocrine neoplasms (NENs) differs between organ systems and currently causes considerable confusion. A uniform classification framework for NENs at any anatomical location may reduce inconsistencies and contradictions among the various systems currently in use. The classification suggested here is intended to allow pathologists and clinicians to manage their patients with NENs consistently, while acknowledging organ-specific differences in classification criteria, tumor biology, and prognostic factors. The classification suggested is based on a consensus conference held at the International Agency for Research on Cancer (IARC) in November 2017 and subsequent discussion with additional experts. The key feature of the new classification is a distinction between differentiated neuroendocrine tumors (NETs), also designated carcinoid tumors in some systems, and poorly differentiated NECs, as they both share common expression of neuroendocrine markers. This dichotomous morphological subdivision into NETs and NECs is supported by genetic evidence at specific anatomic sites as well as clinical, epidemiologic, histologic, and prognostic differences. In many organ systems, NETs are graded as G1, G2, or G3 based on mitotic count and/or Ki-67 labeling index, and/or the presence of necrosis; NECs are considered high grade by definition. We believe this conceptual approach can form the basis for the next generation of NEN classifications and will allow more consistent taxonomy to understand how neoplasms from different organ systems inter-relate clinically and genetically

    KRAS Mutations Testing in Colorectal Carcinoma Patients in Italy: From Guidelines to External Quality Assessment

    Get PDF
    BACKGROUND: Monoclonal antibodies directed against the epidermal growth factor receptor (EGFR) have been approved for the treatment of patients with metastatic colorectal carcinoma (mCRC) that do not carry KRAS mutations. Therefore, KRAS testing has become mandatory to chose the most appropriate therapy for these patients. METHODOLOGY/PRINCIPAL FINDINGS: In order to guarantee the possibility for mCRC patients to receive an high quality KRAS testing in every Italian region, the Italian Association of Medical Oncology (AIOM) and the Italian Society of Pathology and Cytopathology -Italian division of the International Academy of Pathology (SIAPEC-IAP) started a program to improve KRAS testing. AIOM and SIAPEC identified a large panel of Italian medical oncologists, pathologists and molecular biologists that outlined guidelines for KRAS testing in mCRC patients. These guidelines include specific information on the target patient population, the biological material for molecular analysis, the extraction of DNA, and the methods for the mutational analysis that are summarized in this paper. Following the publication of the guidelines, the scientific societies started an external quality assessment scheme for KRAS testing. Five CRC specimens with known KRAS mutation status were sent to the 59 centers that participated to the program. The samples were validated by three referral laboratories. The participating laboratories were allowed to use their own preferred method for DNA extraction and mutational analysis and were asked to report the results within 4 weeks. The limit to pass the quality assessment was set at 100% of true responses. In the first round, only two centers did not pass (3%). The two centers were offered to participate to a second round and both centers failed again to pass. CONCLUSIONS: The results of this first Italian quality assessment for KRAS testing suggest that KRAS mutational analysis is performed with good quality in the majority of Italian centers

    Electronic reminders for pathologists promote recognition of patients at risk for Lynch syndrome: cluster-randomised controlled trial

    Get PDF
    We investigated success factors for the introduction of a guideline on recognition of Lynch syndrome in patients recently diagnosed with colorectal cancer (CRC) below age 50 or a second CRC below age 70. Pathologists were asked to start microsatellite instability (MSI) testing and report to surgeons with the advice to consider genetic counselling when MSI test or family history was positive. A multicentre cluster-randomised controlled trial (ClinicalTrials.gov, number NCT00141466) was performed in 12 pathology laboratories (clusters), serving 29 community hospitals. All received an introduction to the new guideline. In the intervention group, surgeons received education and tumour test result reminders; pathologists were provided with inclusion criteria cards, an electronic patient inclusion reminder system and feedback on inclusion. Two hundred sixty-six CRC patients were eligible for recognition as at risk for Lynch syndrome. The actual recognition was 18% more successful in the intervention as compared to the control arm (77% (120 of 156) compared to 59% (65 of 110)), with an adjusted odds ratio (OR) = 2.8 (95% confidence interval (CI) 1.1–7.0). The electronic reminder system for pathologists was most strongly associated with recognition of high-risk patients, OR = 4.2 (95% CI 1.7–10.1). An electronic reminder system for pathologists appeared effective for adherence to a new complex guideline and will enhance the recognition of Lynch syndrome

    Clinical pharmacogenomic testing of KRAS, BRAF and EGFR mutations by high resolution melting analysis and ultra-deep pyrosequencing

    Get PDF
    BACKGROUND: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. METHODS: We describe a high resolution melting (HRM) assay for mutation detection in EGFR exons 19-21, KRAS codon 12/13 and BRAF V600 using formalin-fixed paraffin-embedded samples. Somatic variation of KRAS exon 2 was also analysed by massively parallel pyrosequencing of amplicons with the GS Junior 454 platform. RESULTS: We tested 120 routine diagnostic specimens from patients with colorectal or lung cancer. Mutations in KRAS, BRAF and EGFR were observed in 41.9%, 13.0% and 11.1% of the overall samples, respectively, being mutually exclusive. For KRAS, six types of substitutions were detected (17 G12D, 9 G13D, 7 G12C, 2 G12A, 2 G12V, 2 G12S), while V600E accounted for all the BRAF activating mutations. Regarding EGFR, two cases showed exon 19 deletions (delE746-A750 and delE746-T751insA) and another two substitutions in exon 21 (one showed L858R with the resistance mutation T590M in exon 20, and the other had P848L mutation). Consistent with earlier reports, our results show that KRAS and BRAF mutation frequencies in colorectal cancer were 44.3% and 13.0%, respectively, while EGFR mutations were detected in 11.1% of the lung cancer specimens. Ultra-deep amplicon pyrosequencing successfully validated the HRM results and allowed detection and quantitation of KRAS somatic mutations. CONCLUSIONS: HRM is a rapid and sensitive method for moderate-throughput cost-effective screening of oncogene mutations in clinical samples. Rather than Sanger sequence validation, next-generation sequencing technology results in more accurate quantitative results in somatic variation and can be achieved at a higher throughput scale.This work was supported by grants from Spanish Health Ministry (FIS) network RIRAAF (RD 07/0064).Ye

    Local and distant recurrences in rectal cancer patients are predicted by the nonspecific immune response; specific immune response has only a systemic effect - a histopathological and immunohistochemical study

    Get PDF
    BACKGROUND: Invasion and metastasis is a complex process governed by the interaction of genetically altered tumor cells and the immunological and inflammatory host reponse. Specific T-cells directed against tumor cells and the nonspecific inflammatory reaction due to tissue damage, cooperate against invasive tumor cells in order to prevent recurrences. Data concerning involvement of individual cell types are readily available but little is known about the coordinate interactions between both forms of immune response. PATIENTS AND METHODS: The presence of inflammatory infiltrate and eosinophils was determined in 1530 patients with rectal adenocarcinoma from a multicenter trial. We selected 160 patients to analyze this inflammatory infiltrate in more detail using immunohistochemistry. The association with the development of local and distant relapses was determined using univariate and multivariate log rank testing. RESULTS: Patients with an extensive inflammatory infiltrate around the tumor had lower recurrence rates (3.4% versus 6.9%, p = 0.03), showing the importance of host response against tumor cells. In particular, peritumoral mast cells prevent local and distant recurrence (44% versus 15%, p = 0.007 and 86% versus 21%, p < 0.0001, respectively), with improved survival as a consequence. The presence of intratumoral T-cells had independent prognostic value for the occurrence of distant metastases (32% versus 76%, p < 0.0001). CONCLUSIONS: We showed that next to properties of tumor cells, the amount and type of inflammation is also relevant in the control of rectal cancer. Knowledge of the factors involved may lead to new approaches in the management of rectal cancer
    corecore