407 research outputs found

    Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in virus infected cells

    Get PDF
    High throughput detection of differential expression of genes is an efficient means of identifying genes and pathways that may play a role in biological systems under certain experimental conditions. There exist a variety of approaches that could be used to identify groups of genes that change in expression in response to a particular stimulus or environment. We here describe the application of suppression subtractive hybridization (SSH) coupled with cDNA microarray analysis for isolation and identification of chicken transcripts that change in expression on infection of host cells with a paramyxovirus. SSH was used for initial isolation of differentially expressed transcripts, a large-scale validation of which was accomplished by microarray analysis. The data reveals a large group of regulated genes constituting many biochemical pathways that could serve as targets for future investigations to explore their role in paramyxovirus pathogenesis. The detailed methods described herein could be useful and adaptable to any biological system for studying changes in gene expression

    Electron transparent nanotubes reveal crystallization pathways in confinement

    Get PDF
    The cylindrical pores of track-etched membranes offer excellent environments for studying the effects of confinement on crystallization as the pore diameter is readily varied and the anisotropic morphologies can direct crystal orientation. However, the inability to image individual crystals in situ within the pores in this system has prevented many of the underlying mechanisms from being characterized. Here, we study the crystallization of calcium sulfate within track-etched membranes and reveal that oriented gypsum forms in 200 nm diameter pores, bassanite in 25–100 nm pores and anhydrite in 10 nm pores. The crystallization pathways are then studied by coating the membranes with an amorphous titania layer prior to mineralization to create electron transparent nanotubes that protect fragile precursor materials. By visualizing the evolutionary pathways of the crystals within the pores we show that the product single crystals derive from multiple nucleation events and that orientation is determined at early reaction times. Finally, the transformation of bassanite to gypsum within the membrane pores is studied using experiment and potential mean force calculations and is shown to proceed by localized dissolution/reprecipitation. This work provides insight into the effects of confinement on crystallization processes, which is relevant to mineral formation in many real-world environments

    Genetic variation among species, races, forms and inbred lines of lac insects belonging to the genus Kerria (Homoptera, Tachardiidae)

    Get PDF
    The lac insects (Homoptera: Tachardiidae), belonging to the genus Kerria, are commercially exploited for the production of lac. Kerria lacca is the most commonly used species in India. RAPD markers were used for assessing genetic variation in forty-eight lines of Kerria, especially among geographic races, infrasubspecific forms, cultivated lines, inbred lines, etc., of K. lacca. In the 48 lines studied, the 26 RAPD primers generated 173 loci, showing 97.7% polymorphism. By using neighbor-joining, the dendrogram generated from the similarity matrix resolved the lines into basically two clusters and outgroups. The major cluster, comprising 32 lines, included mainly cultivated lines of the rangeeni form, geographic races and inbred lines of K. lacca. The second cluster consisted of eight lines of K. lacca, seven of the kusmi form and one of the rangeeni from the southern state of Karnataka. The remaining eight lines formed a series of outgroups, this including a group of three yellow mutant lines of K. lacca and other species of the Kerria studied, among others. Color mutants always showed distinctive banding patterns compared to their wild-type counterparts from the same population. This study also adds support to the current status of kusmi and rangeeni, as infraspecific forms of K. lacca

    Causes of Abnormal Ca2+ Transients in Guinea Pig Pathophysiological Ventricular Muscle Revealed by Ca2+ and Action Potential Imaging at Cellular Level

    Get PDF
    BACKGROUND: Abnormal Ca(2+) transients are often observed in heart muscles under a variety of pathophysiological conditions including ventricular tachycardia. To clarify whether these abnormal Ca(2+) transients can be attributed to abnormal action potential generation or abnormal Ca(2+) handling/excitation-contraction (EC) coupling, we developed a procedure to determine Ca(2+) and action potential signals at the cellular level in isolated heart tissues. METHODOLOGY/PRINCIPAL FINDINGS: After loading ventricular papillary muscle with rhod-2 and di-4-ANEPPS, mono-wavelength fluorescence images from rhod-2 and ratiometric images of two wavelengths of emission from di-4-ANEPPS were sequentially obtained. To mimic the ventricular tachycardia, the ventricular muscles were field-stimulated in non-flowing Krebs solution which elicited abnormal Ca(2+) transients. For the failed and alternating Ca(2+) transient generation, there were two types of causes, i.e., failed or abnormal action potential generation and abnormal EC coupling. In cells showing delayed initiation of Ca(2+) transients with field stimulation, action potential onset was delayed and the rate of rise was slower than in healthy cells. Similar delayed onset was also observed in the presence of heptanol, an inhibitor of gap junction channels but having a non-specific channel blocking effect. A Na(+) channel blocker, on the other hand, reduced the rate of rise of the action potentials but did not result in desynchronization of the action potentials. The delayed onset of action potentials can be explained primarily by impaired gap junctions and partly by Na(+) channel inactivation. CONCLUSIONS/SIGNIFICANCE: Our results indicate that there are multiple patterns for the causes of abnormal Ca(2+) signals and that our methods are useful for investigating the physiology and pathophysiology of heart muscle

    Beckman Access versus the Bayer ACS:180 and the Abbott AxSYM cardiac Troponin-I real-time immunoassays: an observational prospective study

    Get PDF
    BACKGROUND: Reliability of cardiac troponin-I assays under real-time conditions has not been previously well studied. Most large published cTnI trials have utilized protocols which required the freezing of serum (or plasma) for delayed batch cTnI analysis. We sought to correlate the presence of the acute ischemic coronary syndrome (AICS) to troponin-I values obtained in real-time by three random-mode analyzer immunoassay systems: the Beckman ACCESS (BA), the Bayer ACS:180 (CC) and the Abbott AxSYM (AX). METHODS: This was an observational prospective study at a university tertiary referral center. Serum from a convenience sampling of telemetry patients was analyzed in real-time for troponin-I by either the BA-CC (Arm-1) or BA-AX (Arm-2) assay pairs. Presence of the AICS was determined retrospectively and then correlated with troponin-I results. RESULTS: 100 patients were enrolled in Arm-1 (38 with AICS) and 94 in Arm-2 (48 with AICS). The BA system produced 51% false positives in Arm-1, 44% in Arm-2, with negative predictive values of 92% and 100% respectively. In Arm-1, the BA and the CC assays had sensitivities of 97% and 63% and specificities of 18% and 87%. In Arm-2, the BA and the AX assays had sensitivities of 100% and 83% and specificities of 11% and 78%. CONCLUSIONS: In real-time analysis, the performance of the AxSYM and ACS:180 assay systems produced more accurate troponin-I results than the ACCESS system

    Model-based parametric study of frontostriatal abnormalities in schizophrenia patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have suggested that the activity of the prefrontal cortex (PFC) and the dopamine (DA) release in the striatum has an inverse relationship. One would attribute this relationship primarily to the circuitry comprised of the glutamatergic projection from the PFC to the striatum and the GABAergic projection from the striatum to the midbrain DA nucleus. However, this circuitry has not characterized satisfactorily yet, so that no quantitative analysis has ever been made on the activities of the PFC and the striatum and also the DA release in the striatum.</p> <p>Methods</p> <p>In this study, a system dynamics model of the corticostriatal system with dopaminergic innervations is constructed to describe the relationships between the activities of the PFC and the striatum and the DA release in the striatum. By taking published receptor imaging data from schizophrenia patients and healthy subjects into this model, this article analyzes the effects of striatal D2 receptor activation on the balance of the activity and neurotransmission in the frontostriatal system of schizophrenic patients in comparison with healthy controls.</p> <p>Results</p> <p>The model predicts that the suppressive effect by D2 receptors at the terminals of the glutamatergic afferents to the striatum from the PFC enhances the hypofrontality-induced elevation of striatal DA release by at most 83%. The occupancy-based estimation of the 'optimum' D2 receptor occupancy by antipsychotic drugs is 52%. This study further predicts that patients with lower PFC activity tend to have greater improvement of positive symptoms following antipsychotic medication.</p> <p>Conclusion</p> <p>This model-based parametric study would be useful for system-level analysis of the brains with psychiatric diseases. It will be able to make reliable prediction of clinical outcome when sufficient data will be available.</p

    Incentive motivation in first-episode psychosis: A behavioural study

    Get PDF
    <p>Abstract</p> <p>Background:</p> <p>It has been proposed that there are abnormalities in incentive motivational processing in psychosis, possibly secondary to subcortical dopamine abnormalities, but few empirical studies have addressed this issue.</p> <p>Methods:</p> <p>We studied incentive motivation in 18 first-episode psychosis patients from the Cambridge early psychosis service CAMEO and 19 control participants using the Cued Reinforcement Reaction Time Task, which measures motivationally driven behaviour. We also gathered information on participants' attentional, executive and spatial working memory function in order to determine whether any incentive motivation deficits were secondary to generalised cognitive impairment.</p> <p>Results:</p> <p>We demonstrated the anticipated "reinforcement-related speeding" effect in controls (17 out of 19 control participants responded faster during an "odd-one-out" task in response to a cue that indicated a high likelihood of a large points reward). Only 4 out of 18 patients showed this effect and there was a significant interaction effect between reinforcement probability and diagnosis on reaction time (F<sub>1,35 </sub>= 14.2, p = 0.001). This deficit was present in spite of preserved executive and attentional function in patients, and persisted even in antipsychotic medication free patients.</p> <p>Conclusion:</p> <p>There are incentive motivation processing abnormalities in first-episode psychosis; these may be secondary to dopamine dysfunction and are not attributable to generalised cognitive impairment.</p

    Test-retest variability of high resolution positron emission tomography (PET) imaging of cortical serotonin (5HT2A) receptors in older, healthy adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Position emission tomography (PET) imaging using [<sup>18</sup>F]-setoperone to quantify cortical 5-HT<sub>2A </sub>receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT<sub>2A </sub>receptor (5HT<sub>2A</sub>R) binding potential. The purpose of this study was to assess the test-retest variability of [<sup>18</sup>F]-setoperone PET with a high resolution scanner (HRRT) for measuring 5HT<sub>2A</sub>R availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years) completed two [<sup>18</sup>F]-setoperone PET scans on two separate occasions 5–16 weeks apart.</p> <p>Results</p> <p>The average difference in the binding potential (BP<sub>ND</sub>) as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions.</p> <p>Conclusion</p> <p>We conclude that the test-retest variability of [<sup>18</sup>F]-setoperone PET in elderly subjects is comparable to that of [<sup>18</sup>F]-setoperone and other 5HT<sub>2A</sub>R radiotracers in younger subject samples.</p

    Biophysics of Malarial Parasite Exit from Infected Erythrocytes

    Get PDF
    Upon infection and development within human erythrocytes, P. falciparum induces alterations to the infected RBC morphology and bio-mechanical properties to eventually rupture the host cells through parasitic and host derived proteases of cysteine and serine families. We used previously reported broad-spectrum inhibitors (E64d, EGTA-AM and chymostatin) to inhibit these proteases and impede rupture to analyze mechanical signatures associated with parasite escape. Treatment of late-stage iRBCs with E64d and EGTA-AM prevented rupture, resulted in no major RBC cytoskeletal reconfiguration but altered schizont morphology followed by dramatic re-distribution of three-dimensional refractive index (3D-RI) within the iRBC. These phenotypes demonstrated several-fold increased iRBC membrane flickering. In contrast, chymostatin treatment showed no 3D-RI changes and caused elevated fluctuations solely within the parasitophorous vacuole. We show that E64d and EGTA-AM supported PV breakdown and the resulting elevated fluctuations followed non-Gaussian pattern that resulted from direct merozoite impingement against the iRBC membrane. Optical trapping experiments highlighted reduced deformability of the iRBC membranes upon rupture-arrest, more specifically in the treatments that facilitated PV breakdown. Taken together, our experiments provide novel mechanistic interpretations on the role of parasitophorous vacuole in maintaining the spherical schizont morphology, the impact of PV breakdown on iRBC membrane fluctuations leading to eventual parasite escape and the evolution of membrane stiffness properties of host cells in which merozoites were irreversibly trapped, recourse to protease inhibitors. These findings provide a comprehensive, previously unavailable, body of information on the combined effects of biochemical and biophysical factors on parasite egress from iRBCs.Singapore. Agency for Science, Technology and ResearchSingapore-MIT AllianceGlobal Enterprise for Micro-Mechanics and Molecular MedicineNational University of SingaporeNational Institutes of Health (U.S.) (Grant R01 HL094270-01A1)National Institutes of Health (U.S.) (Grant 1-R01-GM076689-01)National Institutes of Health (U.S.) (P41-RR02594-18-24

    Transforming growth factor β receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of left ventricular (LV) remodeling after acute myocardial infarction (MI) is clinically important and would benefit from the discovery of new biomarkers.</p> <p>Methods</p> <p>Blood samples were obtained upon admission in patients with acute ST-elevation MI who underwent primary percutaneous coronary intervention. Messenger RNA was extracted from whole blood cells. LV function was evaluated by echocardiography at 4-months.</p> <p>Results</p> <p>In a test cohort of 32 MI patients, integrated analysis of microarrays with a network of protein-protein interactions identified subgroups of genes which predicted LV dysfunction (ejection fraction ≤ 40%) with areas under the receiver operating characteristic curve (AUC) above 0.80. Candidate genes included transforming growth factor beta receptor 1 (TGFBR1). In a validation cohort of 115 MI patients, TGBFR1 was up-regulated in patients with LV dysfunction (P < 0.001) and was associated with LV function at 4-months (P = 0.003). TGFBR1 predicted LV function with an AUC of 0.72, while peak levels of troponin T (TnT) provided an AUC of 0.64. Adding TGFBR1 to the prediction of TnT resulted in a net reclassification index of 8.2%. When added to a mixed clinical model including age, gender and time to reperfusion, TGFBR1 reclassified 17.7% of misclassified patients. TGFB1, the ligand of TGFBR1, was also up-regulated in patients with LV dysfunction (P = 0.004), was associated with LV function (P = 0.006), and provided an AUC of 0.66. In the rat MI model induced by permanent coronary ligation, the TGFB1-TGFBR1 axis was activated in the heart and correlated with the extent of remodeling at 2 months.</p> <p>Conclusions</p> <p>We identified TGFBR1 as a new candidate prognostic biomarker after acute MI.</p
    corecore