4,966 research outputs found
The potential roles of hepatocyte growth factor (HGF)-MET pathway inhibitors in cancer treatment
MET is located on chromosome 7q31 and is a proto-oncogene that encodes for hepa-tocyte growth factor (HGF) receptor, a member of the receptor tyrosine kinase (RTK) family. HGF, also known as scatter factor (SF), is the only known ligand for MET. MET is a master regulator of cell growth and division (mitogenesis), mobility (motogenesis), and differentiation (morphogenesis); it plays an important role in normal development and tissue regeneration. The HGF-MET axis is frequently dysregulated in cancer by MET gene amplification, translocation, and mutation, or by MET or HGF protein overexpression. MET dysregulation is associated with an increased propensity for metastatic disease and poor overall prognosis across multiple tumor types. Targeting the dysregulated HGF-MET pathway is an area of active research; a number of monoclonal antibodies to HGF and MET, as well as small molecule inhibitors of MET, are under development. This review summarizes the key biological features of the HGF-MET axis, its dysregulation in cancer, and the therapeutic agents targeting the HGF-MET axis, which are in development. © 2014 Parikh et al
Possible scale invariant linear magnetoresistance in pyrochlore iridates Bi2Ir2O7
We report the observation of a linear magnetoresistance in single crystals and epitaxial thin films of the pyrochlore iridate Bi2Ir2O7. The linear magnetoresistance is positive and isotropic at low temperatures, without any sign of saturation up to 35 T. As temperature increases, the linear field dependence gradually evolves to a quadratic field dependence. The temperature and field dependence of magnetoresistance of Bi2Ir2O7 bears strikingly resemblance to the scale invariant magnetoresistance observed in the strange metal phase in high Tc cuprates. However, the residual resistivity of Bi2Ir2O7 is more than two orders of magnitude higher than the curpates. Our results suggest that the correlation between linear magnetoresistance and quantum fluctuations may exist beyond high temperature superconductors
Three-dimensional topologically gauged N=6 ABJM type theories
In this paper we construct the conformal supergravity in three
dimensions from a set of Chern-Simons-like terms one for each of the graviton,
gravitino, and R-symmetry gauge field and then couple this theory to the
superconformal ABJM theory. In a first step part of the coupled
Lagrangian for this topologically gauged ABJM theory is derived by demanding
that all terms of third and second order in covariant derivatives cancel in the
supersymmtry variation of the Lagrangian. To achieve this the transformation
rules of the two separate sectors must be augmented by new terms. In a second
step we analyze all terms in that are of first order in covariant
derivatives. The cancelation of these terms require additional terms in the
transformation rules as well as a number of new terms in the Lagrangian. As a
final step we check that all remaining terms in which are bilinear
in fermions cancel which means that the presented Lagrangian and transformation
rules constitute the complete answer. In particular we find in the last step
new terms in the scalar potential containing either one or no structure
constant. The non-derivative higher fermion terms in that have not
yet been completely analyzed are briefly discussed.Comment: 26 pages, v.2 minor corrections, comment on relation to chiral
gravity added
Materials Characterization Using Acoustic Nonlinearity Parameters and Harmonic Generation: Effects of Crystalline and Amorphous Structures
The importance of nonlinearity in the description of material behavior is gaining widespread attention. Nonlinearity plays a major, if not dominating, role in a number of material properties. For example, properties that are important in engineering design such as thermal expansion or the pressure dependence of optical refraction are inherently nonlinear [1]. New assembley techniques such as the use of ultrasonic gauges to determine the loading of critical fasteners depend upon nonlinear properties of the fasteners [2]. Areas of considerable fundamental interest in nonlinearity include lattice dynamics [3], radiation stress in solids [4,5], and nonlinear optics [6
Establishing dynamic impact function for house pricing based on surrounding multi-attributes: Evidence from Taipei City
[[abstract]]The objective of the research is aimed for a solution that is to establish the dynamic impact function of surrounding multi-attribute for house pricing. It is also able to measure the ripple effect and allows the hedonic parameter estimates
to vary from point-to-point. A comprehensive literature review is carried out to obtain an adequate theoretical basis for the
corresponding hypothesis and concepts. The proposed dynamic impact function for multi- attributes is then constructed
based on the characteristics of surrounding facilities. Adopting the convenience sampling criteria of 95% confidence level
on the data sampling and 10% limit of error in a 5−95% proportion, we collect the empirical data of 39 yearly house sales
in the investigated urban areas of Taipei city focusing on housing prices and then utilize them for evaluating and adjusting
the function. The actual house price and that of proposed function affected by Mass Rapid Transit (MRT) stations are analysed, resulting in the correlation coefficient at 0.946 (single attribute) and 0.944 (multi-attribute), respectively. The findings support that proposed function can highly represent the house pricing pattern and be an accurate tool for appraisers.[[notice]]補正完
A No-Go Theorem for M5-brane Theory
The BLG model for multiple M2-branes motivates an M5-brane theory with a
novel gauge symmetry defined by the Nambu-Poisson structure. This Nambu-Poisson
gauge symmetry for an M5-brane in large C-field background can be matched, on
double dimension reduction, with the Poisson limit of the noncommutative gauge
symmetry for a D4-brane in B-field background. Naively, one expects that there
should exist a certain deformation of the Nambu-Poisson structure to match with
the full noncommutative gauge symmetry including higher order terms. However,
We prove the no-go theorem that there is no way to deform the Nambu-Poisson
gauge symmetry, even without assuming the existence of a deformation of
Nambu-Poisson bracket, to match with the noncommutative gauge symmetry in 4+1
dimensions to all order, regardless of how the double dimension reduction is
implemented.Comment: v4: minor modifications
Core structures of the decorate edge dislocations in GaN epilayers
Threading dislocations with edge components were investigated by a high-resolution transmission electron microscope in undoped GaN epilayers grown on Al2O3 substrates. Two types of core images were observed. One is a fully filled core with regular contraction and expansion of diffraction bright dots and the other is incompletely filled with one bright dot less and irregular contraction and expansion of bright dots. The impurities around the cores were detected to contain oxygen and carbon elements by energy-dispersive x-ray spectrometer. This suggests that both types of dislocations be decorated with impurities
Frequency tracking by method of least squares combined with channel estimation for OFDM over mobile wireless channels
[[abstract]]To track frequency offset and time-varying channel in orthogonal frequency division multiplexing (OFDM) systems over mobile wireless channels, a common technique is, based on one OFDM training block sample, to apply the maximum-likelihood (ML) algorithm to perform joint frequency tracking and channel estimation employing some adaptive iteration processes. The major drawback of such joint estimation techniques is the local extrema problem arising from the highly nonlinear nature of the log-likelihood function. This makes the joint estimation process very difficult and complicated, and many a time the results are not very satisfactory if the algorithm is not well designed. In this study, rather than using the ML algorithm, we shall apply the method of least squares (LS) for frequency tracking utilizing repeated OFDM training blocks. As will be seen, by using such an LS approach, the frequency offset estimation requires no channel knowledge. The channel state can be estimated separately after the LS frequency offset correction. This not only circumvents the local extrema complication, but also obviates the need for the lengthy adaptive iteration process of joint estimation thus greatly simplifies the entire estimation process. Most importantly, our technique can achieve excellent estimation performance as compared to the usual ML algorithms.[[incitationindex]]SCI[[booktype]]紙
Monitoring iron chelation effect in hearts of thalassaemia patients with improved sensitivity using reduced transverse relaxation rate (RR2)
Posters - Myocardial Viability: Human Models: No. 3660Accurate MRI characterization of myocardial iron is needed to improve the diagnosis and management of thalassaemia patients with transfusional iron overload. This study aimed to demonstrate that a new transverse relaxation index, the reduced R2 (RR2) that is estimated from non-monoexponential multi-echo CPMG signal decay and sensitive to ferritin iron, could detect the myocardial iron changes immediately following 1-week iron chelation suspension in thalassaemia patients at 3T.postprin
- …