353 research outputs found
Charge asymmetries of top quarks at hadron colliders revisited
A sizeable difference in the differential production cross section of top-
compared to antitop-quark production, denoted charge asymmetry, has been
observed at the Tevatron. The experimental results seem to exceed the theory
predictions based on the Standard Model by a significant amount and have
triggered a large number of suggestions for "new physics". In the present paper
the Standard Model predictions for Tevatron and LHC experiments are revisited.
This includes a reanalysis of electromagnetic as well as weak corrections,
leading to a shift of the asymmetry by roughly a factor 1.1 when compared to
the results of the first papers on this subject. The impact of cuts on the
transverse momentum of the top-antitop system is studied. Restricting the ttbar
system to a transverse momentum less than 20 GeV leads to an enhancement of the
asymmetries by factors between 1.3 and 1.5, indicating the importance of an
improved understanding of the -momentum distribution. Predictions for
similar measurements at the LHC are presented, demonstrating the sensitivity of
the large rapidity region both to the Standard Model contribution and effects
from "new physics".Comment: 23 pages. Final version to appear in JHE
RG-improved single-particle inclusive cross sections and forward-backward asymmetry in production at hadron colliders
We use techniques from soft-collinear effective theory (SCET) to derive
renormalization-group improved predictions for single-particle inclusive (1PI)
observables in top-quark pair production at hadron colliders. In particular, we
study the top-quark transverse-momentum and rapidity distributions, the
forward-backward asymmetry at the Tevatron, and the total cross section at
NLO+NNLL order in resummed perturbation theory and at approximate NNLO in fixed
order. We also perform a detailed analysis of power corrections to the leading
terms in the threshold expansion of the partonic hard-scattering kernels. We
conclude that, although the threshold expansion in 1PI kinematics is
susceptible to numerically significant power corrections, its predictions for
the total cross section are in good agreement with those obtained by
integrating the top-pair invariant-mass distribution in pair invariant-mass
kinematics, as long as a certain set of subleading terms appearing naturally
within the SCET formalism is included.Comment: 55 pages, 14 figures, 6 table
QCD Coherence and the Top Quark Asymmetry
Coherent QCD radiation in the hadroproduction of top quark pairs leads to a
forward--backward asymmetry that grows more negative with increasing transverse
momentum of the pair. This feature is present in Monte Carlo event generators
with coherent parton showering, even though the production process is treated
at leading order and has no intrinsic asymmetry before showering. In addition,
depending on the treatment of recoils, showering can produce a positive
contribution to the inclusive asymmetry. We explain the origin of these
features, compare them in fixed-order calculations and the Herwig++, Pythia and
Sherpa event generators, and discuss their implications.Comment: 28 pages, 11 figures, 2 table
Top pair Asymmetries at Hadron colliders with general couplings
Recently it has been shown that measurement of charge asymmetry of top pair
production at LHC excludes any flavor violating vector gauge boson that
could explain Tevatron forward-backward asymmetry (FBA). We consider the
general form of a gauge boson including left-handed, right-handed vector
and tensor couplings to examine FBA and charge asymmetry. To evaluate top pair
asymmetries at Tevatron and LHC, we consider mixing constraints on
flavor changing couplings and show that this model still explain
forward-backward asymmetry at Tevatron and charge asymmetry can not exclude it
in part of parameters space.Comment: 18 pages, 7 figure
Predictions from Heavy New Physics Interpretation of the Top Forward-Backward Asymmetry
We derive generic predictions at hadron colliders from the large
forward-backward asymmetry observed at the Tevatron, assuming the latter arises
from heavy new physics beyond the Standard Model. We use an effective field
theory approach to characterize the associated unknown dynamics. By fitting the
Tevatron t \bar t data we derive constraints on the form of the new physics.
Furthermore, we show that heavy new physics explaining the Tevatron data
generically enhances at high invariant masses both the top pair production
cross section and the charge asymmetry at the LHC. This enhancement can be
within the sensitivity of the 8 TeV run, such that the 2012 LHC data should be
able to exclude a large class of models of heavy new physics or provide hints
for its presence. The same new physics implies a contribution to the
forward-backward asymmetry in bottom pair production at low invariant masses of
order a permil at most.Comment: 11 pages, 6 figures. v2: added remarks on EFT validity range, dijet
bounds and UV completions; matches published versio
Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies
We consider new physics explanations of the anomaly in the top quark
forward-backward asymmetry measured at the Tevatron, in the context of flavor
conserving models. The recently measured LHC dijet distributions strongly
constrain many otherwise viable models. A new scalar particle in the
antitriplet representation of flavor and color can fit the t tbar asymmetry and
cross section data at the Tevatron and avoid both low- and high-energy bounds
from flavor physics and the LHC. An s-channel resonance in uc to uc scattering
at the LHC is predicted to be not far from the current sensitivity. This model
also predicts rich top quark physics for the early LHC from decays of the new
scalar particles. Single production gives t tbar j signatures with high
transverse momentum jet, pair production leads to t tbar j j and 4 jet final
states.Comment: 7 pages, 6 figures; v2: notation clarified, references adde
Massive Spin-2 States as the Origin of the Top Quark Forward-Backward Asymmetry
We show that the anomalously large top quark forward-backward asymmetry
observed by CDF and D\O\, can naturally be accommodated in models with
flavor-violating couplings of a new massive spin-2 state to quarks. Regardless
of its origin, the lowest-order couplings of a spin-2 boson to fermions are
analogous to the coupling of the graviton to energy/momentum, leading to strong
sensitivity of the effects associated with its virtual exchange to the energy
scales at hand. Precisely due to this fact, the observed dependence of the
asymmetry on the invariant mass fits nicely into the proposed
framework. In particular, we find a vast parameter space which can lead to the
central value for the observed forward-backward asymmetry in the high mass bin,
while being in accord with all of the existing experimental constraints.Comment: added discussion of differential observables at the LHC, matches
version accepted for publication in JHE
Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj
We present U(1) flavor models for leptophobic Z' with flavor dependent
couplings to the right-handed up-type quarks in the Standard Model, which can
accommodate the recent data on the top forward-backward (FB) asymmetry and the
dijet resonance associated with a W boson reported by CDF Collaboration. Such
flavor-dependent leptophobic charge assignments generally require extra chiral
fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor
symmetry calls for new U(1)'-charged Higgs doublets in order for the SM
fermions to have realistic renormalizable Yukawa couplings. The stringent
constraints from the top FB asymmetry at the Tevatron and the same sign top
pair production at the LHC can be evaded due to contributions of the extra
Higgs doublets. We also show that the extension could realize cold dark matter
candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion,
accepted for publication in JHE
Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study
INTRODUCTION: To characterise the nutritional status in children with obesity or wasting conditions, European anthropometric reference values for body composition measures beyond the body mass index (BMI) are needed. Differentiated assessment of body composition in children has long been hampered by the lack of appropriate references.
OBJECTIVES: The aim of our study is to provide percentiles for body composition indices in normal weight European children, based on the IDEFICS cohort (Identification and prevention of Dietary-and lifestyle-induced health Effects in Children and infantS).
METHODS: Overall 18 745 2.0-10.9-year-old children from eight countries participated in the study. Children classified as overweight/obese or underweight according to IOTF (N = 5915) were excluded from the analysis. Anthropometric measurements (BMI (N = 12 830); triceps, subscapular, fat mass and fat mass index (N = 11 845-11 901); biceps, suprailiac skinfolds, sum of skinfolds calculated from skinfold thicknesses (N = 8129-8205), neck circumference (N = 12 241); waist circumference and waist-to-height ratio (N = 12 381)) were analysed stratified by sex and smoothed 1st, 3rd, 10th, 25th, 50th, 75th, 90th, 97th and 99th percentile curves were calculated using GAMLSS.
RESULTS: Percentile values of the most important anthropometric measures related to the degree of adiposity are depicted for European girls and boys. Age-and sex-specific differences were investigated for all measures. As an example, the 50th and 99th percentile values of waist circumference ranged from 50.7-59.2 cm and from 51.3-58.7 cm in 4.5-to < 5.0-year-old girls and boys, respectively, to 60.6-74.5 cm in girls and to 59.9-76.7 cm in boys at the age of 10.5-10.9 years.
CONCLUSION: The presented percentile curves may aid a differentiated assessment of total and abdominal adiposity in European children
- …