353 research outputs found

    Charge asymmetries of top quarks at hadron colliders revisited

    Get PDF
    A sizeable difference in the differential production cross section of top- compared to antitop-quark production, denoted charge asymmetry, has been observed at the Tevatron. The experimental results seem to exceed the theory predictions based on the Standard Model by a significant amount and have triggered a large number of suggestions for "new physics". In the present paper the Standard Model predictions for Tevatron and LHC experiments are revisited. This includes a reanalysis of electromagnetic as well as weak corrections, leading to a shift of the asymmetry by roughly a factor 1.1 when compared to the results of the first papers on this subject. The impact of cuts on the transverse momentum of the top-antitop system is studied. Restricting the ttbar system to a transverse momentum less than 20 GeV leads to an enhancement of the asymmetries by factors between 1.3 and 1.5, indicating the importance of an improved understanding of the ttˉt\bar t-momentum distribution. Predictions for similar measurements at the LHC are presented, demonstrating the sensitivity of the large rapidity region both to the Standard Model contribution and effects from "new physics".Comment: 23 pages. Final version to appear in JHE

    RG-improved single-particle inclusive cross sections and forward-backward asymmetry in ttˉt\bar t production at hadron colliders

    Full text link
    We use techniques from soft-collinear effective theory (SCET) to derive renormalization-group improved predictions for single-particle inclusive (1PI) observables in top-quark pair production at hadron colliders. In particular, we study the top-quark transverse-momentum and rapidity distributions, the forward-backward asymmetry at the Tevatron, and the total cross section at NLO+NNLL order in resummed perturbation theory and at approximate NNLO in fixed order. We also perform a detailed analysis of power corrections to the leading terms in the threshold expansion of the partonic hard-scattering kernels. We conclude that, although the threshold expansion in 1PI kinematics is susceptible to numerically significant power corrections, its predictions for the total cross section are in good agreement with those obtained by integrating the top-pair invariant-mass distribution in pair invariant-mass kinematics, as long as a certain set of subleading terms appearing naturally within the SCET formalism is included.Comment: 55 pages, 14 figures, 6 table

    QCD Coherence and the Top Quark Asymmetry

    Full text link
    Coherent QCD radiation in the hadroproduction of top quark pairs leads to a forward--backward asymmetry that grows more negative with increasing transverse momentum of the pair. This feature is present in Monte Carlo event generators with coherent parton showering, even though the production process is treated at leading order and has no intrinsic asymmetry before showering. In addition, depending on the treatment of recoils, showering can produce a positive contribution to the inclusive asymmetry. We explain the origin of these features, compare them in fixed-order calculations and the Herwig++, Pythia and Sherpa event generators, and discuss their implications.Comment: 28 pages, 11 figures, 2 table

    Top pair Asymmetries at Hadron colliders with general ZZ' couplings

    Full text link
    Recently it has been shown that measurement of charge asymmetry of top pair production at LHC excludes any flavor violating ZZ' vector gauge boson that could explain Tevatron forward-backward asymmetry (FBA). We consider the general form of a ZZ' gauge boson including left-handed, right-handed vector and tensor couplings to examine FBA and charge asymmetry. To evaluate top pair asymmetries at Tevatron and LHC, we consider Bq0B^0_q mixing constraints on flavor changing ZZ' couplings and show that this model still explain forward-backward asymmetry at Tevatron and charge asymmetry can not exclude it in part of parameters space.Comment: 18 pages, 7 figure

    Predictions from Heavy New Physics Interpretation of the Top Forward-Backward Asymmetry

    Get PDF
    We derive generic predictions at hadron colliders from the large forward-backward asymmetry observed at the Tevatron, assuming the latter arises from heavy new physics beyond the Standard Model. We use an effective field theory approach to characterize the associated unknown dynamics. By fitting the Tevatron t \bar t data we derive constraints on the form of the new physics. Furthermore, we show that heavy new physics explaining the Tevatron data generically enhances at high invariant masses both the top pair production cross section and the charge asymmetry at the LHC. This enhancement can be within the sensitivity of the 8 TeV run, such that the 2012 LHC data should be able to exclude a large class of models of heavy new physics or provide hints for its presence. The same new physics implies a contribution to the forward-backward asymmetry in bottom pair production at low invariant masses of order a permil at most.Comment: 11 pages, 6 figures. v2: added remarks on EFT validity range, dijet bounds and UV completions; matches published versio

    Explaining the t tbar forward-backward asymmetry without dijet or flavor anomalies

    Full text link
    We consider new physics explanations of the anomaly in the top quark forward-backward asymmetry measured at the Tevatron, in the context of flavor conserving models. The recently measured LHC dijet distributions strongly constrain many otherwise viable models. A new scalar particle in the antitriplet representation of flavor and color can fit the t tbar asymmetry and cross section data at the Tevatron and avoid both low- and high-energy bounds from flavor physics and the LHC. An s-channel resonance in uc to uc scattering at the LHC is predicted to be not far from the current sensitivity. This model also predicts rich top quark physics for the early LHC from decays of the new scalar particles. Single production gives t tbar j signatures with high transverse momentum jet, pair production leads to t tbar j j and 4 jet final states.Comment: 7 pages, 6 figures; v2: notation clarified, references adde

    Massive Spin-2 States as the Origin of the Top Quark Forward-Backward Asymmetry

    Full text link
    We show that the anomalously large top quark forward-backward asymmetry observed by CDF and D\O\, can naturally be accommodated in models with flavor-violating couplings of a new massive spin-2 state to quarks. Regardless of its origin, the lowest-order couplings of a spin-2 boson to fermions are analogous to the coupling of the graviton to energy/momentum, leading to strong sensitivity of the effects associated with its virtual exchange to the energy scales at hand. Precisely due to this fact, the observed dependence of the asymmetry on the ttˉt\bar t invariant mass fits nicely into the proposed framework. In particular, we find a vast parameter space which can lead to the central value for the observed forward-backward asymmetry in the high mass bin, while being in accord with all of the existing experimental constraints.Comment: added discussion of differential observables at the LHC, matches version accepted for publication in JHE

    Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the Wjj

    Full text link
    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model, which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.Comment: 40 pages, 10 figures, added 1 figure and extended discussion, accepted for publication in JHE

    Percentile reference values for anthropometric body composition indices in European children from the IDEFICS study

    Get PDF
    INTRODUCTION: To characterise the nutritional status in children with obesity or wasting conditions, European anthropometric reference values for body composition measures beyond the body mass index (BMI) are needed. Differentiated assessment of body composition in children has long been hampered by the lack of appropriate references. OBJECTIVES: The aim of our study is to provide percentiles for body composition indices in normal weight European children, based on the IDEFICS cohort (Identification and prevention of Dietary-and lifestyle-induced health Effects in Children and infantS). METHODS: Overall 18 745 2.0-10.9-year-old children from eight countries participated in the study. Children classified as overweight/obese or underweight according to IOTF (N = 5915) were excluded from the analysis. Anthropometric measurements (BMI (N = 12 830); triceps, subscapular, fat mass and fat mass index (N = 11 845-11 901); biceps, suprailiac skinfolds, sum of skinfolds calculated from skinfold thicknesses (N = 8129-8205), neck circumference (N = 12 241); waist circumference and waist-to-height ratio (N = 12 381)) were analysed stratified by sex and smoothed 1st, 3rd, 10th, 25th, 50th, 75th, 90th, 97th and 99th percentile curves were calculated using GAMLSS. RESULTS: Percentile values of the most important anthropometric measures related to the degree of adiposity are depicted for European girls and boys. Age-and sex-specific differences were investigated for all measures. As an example, the 50th and 99th percentile values of waist circumference ranged from 50.7-59.2 cm and from 51.3-58.7 cm in 4.5-to < 5.0-year-old girls and boys, respectively, to 60.6-74.5 cm in girls and to 59.9-76.7 cm in boys at the age of 10.5-10.9 years. CONCLUSION: The presented percentile curves may aid a differentiated assessment of total and abdominal adiposity in European children
    corecore