4,823 research outputs found

    Anti-inflammatory effects of naringin in chronic pulmonary neutrophilic inflammation in cigarette smoke-exposed rats

    Get PDF
    Naringin, a well-known flavanone glycoside of grapefruit and citrus fruits, was found to be as an effective anti-inflammatory compound in our previous lipopolysaccharide-induced acute lung injury mouse model via blockading activity of nuclear factor κB. The current study sought to explore the anti-inflammatory effects of naringin on chronic pulmonary neutrophilic inflammation in cigarette smoke (CS)-induced rats. Seventy Sprague-Dawley rats were randomly divided into seven groups to study the effects of CS with or without various concentrations of naringin or saline for 8 weeks. The results revealed that naringin supplementation at 20, 40, and 80mg/kg significantly increased body weight of CS-induced rats as compared to that in the CS group. Moreover, naringin of 20, 40, and 80mg/kg prevented CS-induced infiltration of neutrophils and activation of myeloperoxidase and matrix metalloproteinase-9, in parallel with suppression of the release of cytokines, such as tumor necrosis factor-α and interleukin-8 (IL-8). IL-10 in bronchoalveolar lavage fluid was significantly suppressed after CS exposure, but dose dependently elevated by naringin. The results from hematoxylin and eosin staining revealed that naringin dose dependently reduced CS-induced infiltration of inflammatory cells, thickening of the bronchial wall, and expansion of average alveolar airspace. In conclusion, our data suggest that naringin is an effective anti-inflammatory compound for attenuating chronic pulmonary neutrophilic inflammation in CS-induced rats. © Copyright 2012, Mary Ann Liebert, Inc. and Korean Society of Food Science and Nutrition 2012.published_or_final_versio

    Nanogrids and Beehive-Like Nanostructures Formed by Plasma Etching the Self-Organized SiGe Islands

    Get PDF
    A lithography-free method for fabricating the nanogrids and quasi-beehive nanostructures on Si substrates is developed. It combines sequential treatments of thermal annealing with reactive ion etching (RIE) on SiGe thin films grown on (100)-Si substrates. The SiGe thin films deposited by ultrahigh vacuum chemical vapor deposition form self-assembled nanoislands via the strain-induced surface roughening (Asaro-Tiller-Grinfeld instability) during thermal annealing, which, in turn, serve as patterned sacrifice regions for subsequent RIE process carried out for fabricating nanogrids and beehive-like nanostructures on Si substrates. The scanning electron microscopy and atomic force microscopy observations confirmed that the resultant pattern of the obtained structures can be manipulated by tuning the treatment conditions, suggesting an interesting alternative route of producing self-organized nanostructures

    The Impact of miRNA Target Sites in Coding Sequences and in 3′UTRs

    Get PDF
    Animal miRNAs are a large class of small regulatory RNAs that are known to directly and negatively regulate the expression of a large fraction of all protein encoding genes. The identification and characterization of miRNA targets is thus a fundamental problem in biology. miRNAs regulate target genes by binding to 3′ untranslated regions (3′UTRs) of target mRNAs, and multiple binding sites for the same miRNA in 3′UTRs can strongly enhance the degree of regulation. Recent experiments have demonstrated that a large fraction of miRNA binding sites reside in coding sequences. Overall, miRNA binding sites in coding regions were shown to mediate smaller regulation than 3′UTR binding. However, possible interactions between target sites in coding sequences and 3′UTRs have not been studied. Using transcriptomics and proteomics data of ten miRNA mis-expression experiments as well as transcriptome-wide experimentally identified miRNA target sites, we found that mRNA and protein expression of genes containing target sites both in coding regions and 3′UTRs were in general mildly but significantly more regulated than those containing target sites in 3′UTRs only. These effects were stronger for conserved target sites of length 7–8 nt in coding regions compared to non-conserved sites. Combined with our other finding that miRNA target sites in coding regions are under negative selection, our results shed light on the functional importance of miRNA targeting in coding regions

    Topology optimization for human proximal femur considering bi-modulus behavior of cortical bones

    Full text link
    © Springer International Publishing Switzerland 2015. The material in the human proximal femur is considered as bi-modulus material and the density distribution is predicted by topology optimization method. To reduce the computational cost, the bi-modulus material is replaced with two isotropic materials in simulation. The selection of local material modulus is determined by the previous local stress state. Compared with density prediction results by traditional isotropic material in proximal femur, the bi-modulus material layouts are different obviously. The results also demonstrate that the bi-modulus material model is better than the isotropic material model in simulation of density prediction in femur bone

    A comprehensive evaluation of SAM, the SAM R-package and a simple modification to improve its performance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Significance Analysis of Microarrays (SAM) is a popular method for detecting significantly expressed genes and controlling the false discovery rate (FDR). Recently, it has been reported in the literature that the FDR is not well controlled by SAM. Due to the vast application of SAM in microarray data analysis, it is of great importance to have an extensive evaluation of SAM and its associated R-package (sam2.20).</p> <p>Results</p> <p>Our study has identified several discrepancies between SAM and sam2.20. One major difference is that SAM and sam2.20 use different methods for estimating FDR. Such discrepancies may cause confusion among the researchers who are using SAM or are developing the SAM-like methods. We have also shown that SAM provides no meaningful estimates of FDR and this problem has been corrected in sam2.20 by using a different formula for estimating FDR. However, we have found that, even with the improvement sam2.20 has made over SAM, sam2.20 may still produce erroneous and even conflicting results under certain situations. Using an example, we show that the problem of sam2.20 is caused by its use of asymmetric cutoffs which are due to the large variability of null scores at both ends of the order statistics. An obvious approach without the complication of the order statistics is the conventional symmetric cutoff method. For this reason, we have carried out extensive simulations to compare the performance of sam2.20 and the symmetric cutoff method. Finally, a simple modification is proposed to improve the FDR estimation of sam2.20 and the symmetric cutoff method.</p> <p>Conclusion</p> <p>Our study shows that the most serious drawback of SAM is its poor estimation of FDR. Although this drawback has been corrected in sam2.20, the control of FDR by sam2.20 is still not satisfactory. The comparison between sam2.20 and the symmetric cutoff method reveals that the relative performance of sam2.20 to the symmetric cutff method depends on the ratio of induced to repressed genes in a microarray data, and is also affected by the ratio of DE to EE genes and the distributions of induced and repressed genes. Numerical simulations show that the symmetric cutoff method has the biggest advantage over sam2.20 when there are equal number of induced and repressed genes (i.e., the ratio of induced to repressed genes is 1). As the ratio of induced to repressed genes moves away from 1, the advantage of the symmetric cutoff method to sam2.20 is gradually diminishing until eventually sam2.20 becomes significantly better than the symmetric cutoff method when the differentially expressed (DE) genes are either all induced or all repressed genes. Simulation results also show that our proposed simple modification provides improved control of FDR for both sam2.20 and the symmetric cutoff method.</p

    Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia

    Get PDF
    BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci

    Drivers and Socioeconomic Impacts of Tourism Participation in Protected Areas

    Get PDF
    Nature-based tourism has the potential to enhance global biodiversity conservation by providing alternative livelihood strategies for local people, which may alleviate poverty in and around protected areas. Despite the popularity of the concept of nature-based tourism as an integrated conservation and development tool, empirical research on its actual socioeconomic benefits, on the distributional pattern of these benefits, and on its direct driving factors is lacking, because relevant long-term data are rarely available. In a multi-year study in Wolong Nature Reserve, China, we followed a representative sample of 220 local households from 1999 to 2007 to investigate the diverse benefits that these households received from recent development of nature-based tourism in the area. Within eight years, the number of households directly participating in tourism activities increased from nine to sixty. In addition, about two-thirds of the other households received indirect financial benefits from tourism. We constructed an empirical household economic model to identify the factors that led to household-level participation in tourism. The results reveal the effects of local households' livelihood assets (i.e., financial, human, natural, physical, and social capitals) on the likelihood to participate directly in tourism. In general, households with greater financial (e.g., income), physical (e.g., access to key tourism sites), human (e.g., education), and social (e.g., kinship with local government officials) capitals and less natural capital (e.g., cropland) were more likely to participate in tourism activities. We found that residents in households participating in tourism tended to perceive more non-financial benefits in addition to more negative environmental impacts of tourism compared with households not participating in tourism. These findings suggest that socioeconomic impact analysis and change monitoring should be included in nature-based tourism management systems for long-term sustainability of protected areas
    corecore