466 research outputs found

    A new model for health care delivery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The health care delivery system in the United States is facing cost and quality pressures that will require fundamental changes to remain viable. The optimal structures of the relationships between the hospital, medical school, and physicians have not been determined but are likely to have a large impact on the future of healthcare delivery. Because it is generally agreed that academic medical centers will play a role in the sustainability of this future system, a fundamental understanding of the relative contributions of the stakeholders is important as well as creativity in developing novel strategies to achieve a shared vision.</p> <p>Discussion</p> <p>Core competencies of each of the stakeholders (the hospital, the medical school and the physicians) must complement the others and should act synergistically. At the same time, the stakeholders should determine the common core values and should be able to make a meaningful contribution to the delivery of health care.</p> <p>Summary</p> <p>Health care needs to achieve higher quality and lower cost. Therefore, in order for physicians, medical schools, and hospitals to serve the needs of society in a gratifying way, there will need to be change. There needs to be more scientific and social advances. It is obvious that there is a real and urgent need for relationship building among the professionals whose duty it is to provide these services.</p

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Time course and mechanisms of left ventricular systolic and diastolic dysfunction in monocrotaline-induced pulmonary hypertension

    Get PDF
    Although pulmonary hypertension (PH) selectively overloads the right ventricle (RV), neuroendocrine activation and intrinsic myocardial dysfunction have been described in the left ventricle (LV). In order to establish the timing of LV dysfunction development in PH and to clarify underlying molecular changes, Wistar rats were studied 4 and 6 weeks after subcutaneous injection of monocrotaline (MCT) 60 mg/kg (MCT-4, n = 11; MCT-6, n = 11) or vehicle (Ctrl-4, n = 11; Ctrl-6, n = 11). Acute single beat stepwise increases of systolic pressure were performed from baseline to isovolumetric (LVPiso). This hemodynamic stress was used to detect early changes in LV performance. Neurohumoral activation was evaluated by measuring angiotensin-converting enzyme (ACE) and endothelin-1 (ET-1) LV mRNA levels. Cardiomyocyte apoptosis was evaluated by TUNEL assay. Extracellular matrix composition was evaluated by tenascin-C mRNA levels and interstitial collagen content. Myosin heavy chain (MHC) composition of the LV was studied by protein quantification. MCT treatment increased RV pressures and RV/LV weight ratio, without changing LV end-diastolic pressures or dimensions. Baseline LV dysfunction were present only in MCT-6 rats. Afterload elevations prolonged tau and upward-shifted end-diastolic pressure dimension relations in MCT-4 and even more in MCT-6. MHC-isoform switch, ACE upregulation and cardiomyocyte apoptosis were present in both MCT groups. Rats with severe PH develop LV dysfunction associated with ET-1 and tenascin-C overexpression. Diastolic dysfunction, however, could be elicited at earlier stages in response to hemodynamic stress, when only LV molecular changes, such as MHC isoform switch, ACE upregulation, and myocardial apoptosis were present.Supported by Portuguese grants from FCT (POCI/SAU-FCF/60803/2004 and POCI/SAU-MMO/61547/2004) through Cardiovascular R&D Unit (FCT No. 51/94)

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Paracellular absorption is relatively low in the herbivorous Egyptian spiny-tailed lizard, Uromastyx aegyptia

    Get PDF
    Extent: 9 p.Absorption of small water-soluble nutrients in vertebrate intestines occurs both by specific, mediated transport and by nonspecific, passive, paracellular transport. Although it is apparent that paracellular absorption represents a significant route for nutrient absorption in many birds and mammals, especially small, flying species, its importance in ectothermic vertebrates has not previously been explored. Therefore, we measured fractional absorption (e) and absorption rate of three paracellular probes (arabinose, L-rhamnose, cellobiose) and of 3-O-methyl D-glucose (absorbed by both mediated and paracellular pathways) by the large herbivorous lizard, Uromastyx aegyptia, to explore the relative importance of paracellular and mediated transport in an ectothermic, terrestrial vertebrate. Fractional absorption of 3-O-methyl D-glucose was high (e = 0.7360.04) and similar to other vertebrates; e of the paracellular probes was relatively low (arabinose e = 0.3160.03, Lrhamnose e = 0.1960.02, and cellobiose e = 0.1460.02), and decreased with molecular mass, a pattern consistent with other vertebrates. Paracellular absorption accounted for approximately 24% of total 3-O-methyl D-glucose uptake, indicating low reliance on this pathway for these herbivorous lizards, a pattern similar to that found in other terrestrial vertebrates, and different from small flying endotherms (both birds and bats).Todd J. McWhorter, Berry Pinshow, William H. Karasov and Christopher R. Trac

    Model of SNARE-Mediated Membrane Adhesion Kinetics

    Get PDF
    SNARE proteins are conserved components of the core fusion machinery driving diverse membrane adhesion and fusion processes in the cell. In many cases micron-sized membranes adhere over large areas before fusion. Reconstituted in vitro assays have helped isolate SNARE mechanisms in small membrane adhesion-fusion and are emerging as powerful tools to study large membrane systems by use of giant unilamellar vesicles (GUVs). Here we model SNARE-mediated adhesion kinetics in SNARE-reconstituted GUV-GUV or GUV-supported bilayer experiments. Adhesion involves many SNAREs whose complexation pulls apposing membranes into contact. The contact region is a tightly bound rapidly expanding patch whose growth velocity increases with SNARE density . We find three patch expansion regimes: slow, intermediate, fast. Typical experiments belong to the fast regime where depends on SNARE diffusivities and complexation binding constant. The model predicts growth velocities s. The patch may provide a close contact region where SNAREs can trigger fusion. Extending the model to a simple description of fusion, a broad distribution of fusion times is predicted. Increasing SNARE density accelerates fusion by boosting the patch growth velocity, thereby providing more complexes to participate in fusion. This quantifies the notion of SNAREs as dual adhesion-fusion agents

    Patterns of Interspecific Variation in the Heart Rates of Embryonic Reptiles

    Get PDF
    New non-invasive technologies allow direct measurement of heart rates (and thus, developmental rates) of embryos. We applied these methods to a diverse array of oviparous reptiles (24 species of lizards, 18 snakes, 11 turtles, 1 crocodilian), to identify general influences on cardiac rates during embryogenesis. Heart rates increased with ambient temperature in all lineages, but (at the same temperature) were faster in lizards and turtles than in snakes and crocodilians. We analysed these data within a phylogenetic framework. Embryonic heart rates were faster in species with smaller adult sizes, smaller egg sizes, and shorter incubation periods. Phylogenetic changes in heart rates were negatively correlated with concurrent changes in adult body mass and residual incubation period among the lizards, snakes (especially within pythons) and crocodilians. The total number of embryonic heart beats between oviposition and hatching was lower in squamates than in turtles or the crocodilian. Within squamates, embryonic iguanians and gekkonids required more heartbeats to complete development than did embryos of the other squamate families that we tested. These differences plausibly reflect phylogenetic divergence in the proportion of embryogenesis completed before versus after laying

    Detection, prevalence, and transmission of avian hematozoa in waterfowl at the Arctic/sub-Arctic interface: co-infections, viral interactions, and sources of variation

    Get PDF
    Background The epidemiology of avian hematozoa at high latitudes is still not well understood, particularly in sub-Arctic and Arctic habitats, where information is limited regarding seasonality and range of transmission, co-infection dynamics with parasitic and viral agents, and possible fitness consequences of infection. Such information is important as climate warming may lead to northward expansion of hematozoa with unknown consequences to northern-breeding avian taxa, particularly populations that may be previously unexposed to blood parasites. Methods We used molecular methods to screen blood samples and cloacal/oropharyngeal swabs collected from 1347 ducks of five species during May-August 2010, in interior Alaska, for the presence of hematozoa, Influenza A Virus (IAV), and IAV antibodies. Using models to account for imperfect detection of parasites, we estimated seasonal variation in prevalence of three parasite genera (Haemoproteus, Plasmodium, Leucocytozoon) and investigated how co-infection with parasites and viruses were related to the probability of infection. Results We detected parasites from each hematozoan genus in adult and juvenile ducks of all species sampled. Seasonal patterns in detection and prevalence varied by parasite genus and species, age, and sex of duck hosts. The probabilities of infection for Haemoproteus and Leucocytozoon parasites were strongly positively correlated, but hematozoa infection was not correlated with IAV infection or serostatus. The probability of Haemoproteus infection was negatively related to body condition in juvenile ducks; relationships between Leucocytozoon infection and body condition varied among host species. Conclusions We present prevalence estimates for Haemoproteus, Leucocytozoon, and Plasmodium infections in waterfowl at the interface of the sub-Arctic and Arctic and provide evidence for local transmission of all three parasite genera. Variation in prevalence and molecular detection of hematozoa parasites in wild ducks is influenced by seasonal timing and a number of host traits. A positive correlation in co-infection of Leucocytozoon and Haemoproteus suggests that infection probability by parasites in one or both genera is enhanced by infection with the other, or that encounter rates of hosts and genus-specific vectors are correlated. Using size-adjusted mass as an index of host condition, we did not find evidence for strong deleterious consequences of hematozoa infection in wild ducks.Geological Survey (U.S.) (Wildlife Program of the Ecosystem Mission Area)U.S. Fish and Wildlife ServiceDelta Waterfowl FoundationInstitute for Wetland and Waterfowl ResearchIcahn School of Medicine at Mount Sinai (Center for Research on Influenza Pathogenesis)Center of Excellence for Influenza Research and Surveillance (contracts HHSN272201400008C and HHSN266200700010C

    Functional Characterization of Transcription Factor Motifs Using Cross-species Comparison across Large Evolutionary Distances

    Get PDF
    We address the problem of finding statistically significant associations between cis-regulatory motifs and functional gene sets, in order to understand the biological roles of transcription factors. We develop a computational framework for this task, whose features include a new statistical score for motif scanning, the use of different scores for predicting targets of different motifs, and new ways to deal with redundancies among significant motif–function associations. This framework is applied to the recently sequenced genome of the jewel wasp, Nasonia vitripennis, making use of the existing knowledge of motifs and gene annotations in another insect genome, that of the fruitfly. The framework uses cross-species comparison to improve the specificity of its predictions, and does so without relying upon non-coding sequence alignment. It is therefore well suited for comparative genomics across large evolutionary divergences, where existing alignment-based methods are not applicable. We also apply the framework to find motifs associated with socially regulated gene sets in the honeybee, Apis mellifera, using comparisons with Nasonia, a solitary species, to identify honeybee-specific associations

    Full Sequence and Comparative Analysis of the Plasmid pAPEC-1 of Avian Pathogenic E. coli Ο‡7122 (O78∢K80∢H9)

    Get PDF
    (APEC), are very diverse. They cause a complex of diseases in Human, animals, and birds. Even though large plasmids are often associated with the virulence of ExPEC, their characterization is still in its infancy., are also present in the sequence of pAPEC-1. The comparison of the pAPEC-1 sequence with the two available plasmid sequences reveals more gene loss and reorganization than previously appreciated. The presence of pAPEC-1-associated genes is assessed in human ExPEC by PCR. Many patterns of association between genes are found.The pathotype typical of pAPEC-1 was present in some human strains, which indicates a horizontal transfer between strains and the zoonotic risk of APEC strains. ColV plasmids could have common virulence genes that could be acquired by transposition, without sharing genes of plasmid function
    • …
    corecore