629 research outputs found

    Consensus Statements on PSMA PET/CT Response Assessment Criteria in Prostate Cancer

    Get PDF
    Funding The one-day EAU / EANM PSMA PET/CT Response Assessment Criteria meeting received an unrestricted grant from Janssen, and no influences on the content of the meeting or on the publication. Acknowledgements The authors acknowledge John William Bean PhD (Bean Medical Writing, Halle, Belgium and funded by EAU Research Foundation) for providing medical writing services and Wim Witjes MD PhD (Scientific and Clinical Research Director EAU Research Foundation) and Emily Spieker (Management Assistant, European Association of Urology) for project management.Peer reviewedPublisher PD

    Nightingallery: theatrical framing and orchestration in participatory performance

    Get PDF
    The Nightingallery project encouraged participants to converse, sing, and perform with a musically responsive animatronic bird, playfully interacting with the character while members of the public could look on and observe. We used Nightingallery to frame an HCI investigation into how people would engage with one another when confronted with unfamiliar technologies in conspicuously public, social spaces. Structuring performances as improvisational street theatre, we styled our method of exhibiting the bird character. We cast ourselves in supporting roles as carnival barkers and minders of the bird, presenting him as if he were a fantastical creature in a fairground sideshow display, allowing him the agency to shape and maintain dialogues with participants, and positioning him as the focal character upon which the encounter was centred. We explored how the anthropomorphic nature of the bird itself, along with the cultural connotations associated with the carnival/sideshow tradition helped signpost and entice participants through the trajectory of their encounters with the exhibit. Situating ourselves as secondary characters within the narrative defining the performance/use context, our methods of mediation, observation, and evaluation were integrated into the performance frame. In this paper, we explore recent HCI theories in mixed reality performance to reflect upon how genre-based cultural connotations can be used to frame trajectories of experience, and how manipulation of roles and agency in participatory performance can facilitate HCI investigation of social encounters with playful technologies. © 2014 Springer-Verlag London

    Interferon regulatory factor 8-deficiency determines massive neutrophil recruitment but T cell defect in fast growing granulomas during tuberculosis

    Get PDF
    Following Mycobacterium tuberculosis (Mtb) infection, immune cell recruitment in lungs is pivotal in establishing protective immunity through granuloma formation and neogenesis of lymphoid structures (LS). Interferon regulatory factor-8 (IRF-8) plays an important role in host defense against Mtb, although the mechanisms driving anti-mycobacterial immunity remain unclear. In this study, IRF-8 deficient mice (IRF-8−/−) were aerogenously infected with a low-dose Mtb Erdman virulent strain and the course of infection was compared with that induced in wild-type (WT-B6) counterparts. Tuberculosis (TB) progression was examined in both groups using pathological, microbiological and immunological parameters. Following Mtb exposure, the bacterial load in lungs and spleens progressed comparably in the two groups for two weeks, after which IRF-8−/− mice developed a fatal acute TB whereas in WT-B6 the disease reached a chronic stage. In lungs of IRF-8−/−, uncontrolled growth of pulmonary granulomas and impaired development of LS were observed, associated with unbalanced homeostatic chemokines, progressive loss of infiltrating T lymphocytes and massive prevalence of neutrophils at late infection stages. Our data define IRF-8 as an essential factor for the maintenance of proper immune cell recruitment in granulomas and LS required to restrain Mtb infection. Moreover, IRF-8−/− mice, relying on a common human and mouse genetic mutation linked to susceptibility/severity of mycobacterial diseases, represent a valuable model of acute TB for comparative studies with chronically-infected congenic WT-B6 for dissecting protective and pathological immune reactions

    Excitations of incoherent spin-waves due to spin-transfer torque

    Full text link
    As predicted by Slonczewski and Berger, the possibility of exciting microwave oscillations in a nanomagnet by a spin-polarized current has been recently demonstrated. This observation opens very important perspectives of applications in RF components. However, some unresolved inconsistencies are found when interpreting the magnetization dynamics results within the coherent spin-torque model (CSM). In some cases, the telegraph noise caused by spin-currents could not be described quantitatively by the CSM. This led to controversies about the need of an effective magnetic temperature model (ETM). Here we interpret the experimental results of Kiselev et al. [Nature 425, 380 (2003)] using micromagnetic simulations. We point out the key role played by incoherent spin-waves excitation due to spin-transfer effects. The incoherence is caused by the spatial inhomogeneities of the local fields, generating a distribution of local precession frequencies. It results in telegraph noise at zero temperature associated with transitions between attraction wells in phase space.Comment: Nature Materials advance online publication, 7 November 200

    EAU-EANM Consensus Statements on the Role of Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography in Patients with Prostate Cancer and with Respect to [177Lu]Lu-PSMA Radioligand Therapy

    Get PDF
    Funding support and role of sponsor: The EAU/EANM PSMA-based imaging and therapy consensus meeting was supported by an unrestricted educational grant from Novartis; Novartis had no influence over the content of the meeting or the publication. Medical writing support was funded by the European Association of Urology Research Foundation. Acknowledgements: The authors acknowledge Emily Spieker (Management Assistant, European Association of Urology) for project management. Medical writing support was provided by Angela Corstorphine of Kstorfin Medical Communications (KMC) limited.Peer reviewedPublisher PD

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    COSMIC 2005

    Get PDF
    The Catalogue Of Somatic Mutations In Cancer (COSMIC) database and web site was developed to preserve somatic mutation data and share it with the community. Over the past 25 years, approximately 350 cancer genes have been identified, of which 311 are somatically mutated. COSMIC has been expanded and now holds data previously reported in the scientific literature for 28 known cancer genes. In addition, there is data from the systematic sequencing of 518 protein kinase genes. The total gene count in COSMIC stands at 538; 25 have a mutation frequency above 5% in one or more tumour type, no mutations were found in 333 genes and 180 are rarely mutated with frequencies <5% in any tumour set. The COSMIC web site has been expanded to give more views and summaries of the data and provide faster query routes and downloads. In addition, there is a new section describing mutations found through a screen of known cancer genes in 728 cancer cell lines including the NCI-60 set of cancer cell lines

    Neural Dynamics during Anoxia and the “Wave of Death”

    Get PDF
    Recent experiments in rats have shown the occurrence of a high amplitude slow brain wave in the EEG approximately 1 minute after decapitation, with a duration of 5–15 s (van Rijn et al, PLoS One 6, e16514, 2011) that was presumed to signify the death of brain neurons. We present a computational model of a single neuron and its intra- and extracellular ion concentrations, which shows the physiological mechanism for this observation. The wave is caused by membrane potential oscillations, that occur after the cessation of activity of the sodium-potassium pumps has lead to an excess of extracellular potassium. These oscillations can be described by the Hodgkin-Huxley equations for the sodium and potassium channels, and result in a sudden change in mean membrane voltage. In combination with a high-pass filter, this sudden depolarization leads to a wave in the EEG. We discuss that this process is not necessarily irreversible
    corecore