118 research outputs found

    Tumor Susceptibility Gene 101 (TSG101) Is a Novel Binding-Partner for the Class II Rab11-FIPs

    Get PDF
    The Rab11-FIPs (Rab11-family interacting proteins; henceforth, FIPs) are a family of Rab11a/Rab11b/Rab25 GTPase effector proteins implicated in an assortment of intracellular trafficking processes. Through proteomic screening, we have identified TSG101 (tumor susceptibility gene 101), a component of the ESCRT-I (endosomal sorting complex required for transport) complex, as a novel FIP4-binding protein, which we find can also bind FIP3. We show that α-helical coiled-coil regions of both TSG101 and FIP4 mediate the interaction with the cognate protein, and that point mutations in the coiled-coil regions of both TSG101 and FIP4 abrogate the interaction. We find that expression of TSG101 and FIP4 mutants cause cytokinesis defects, but that the TSG101-FIP4 interaction is not required for localisation of TSG101 to the midbody/Flemming body during abscission. Together, these data suggest functional overlap between Rab11-controlled processes and components of the ESCRT pathway

    Decompressive cervical laminectomy and lateral mass screw-rod arthrodesis. Surgical analysis and outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study evaluates the outcome and complications of decompressive cervical Laminectomy and lateral mass screw fixation in 110 cases treated for variable cervical spine pathologies that included; degenerative disease, trauma, neoplasms, metabolic-inflammatory disorders and congenital anomalies.</p> <p>Methods</p> <p>A retrospective review of total 785 lateral mass screws were placed in patients ages 16-68 years (40 females and 70 males). All cases were performed with a polyaxial screw-rod construct and screws were placed by using Anderson-Sekhon trajectory. Most patients had 12-14-mm length and 3.5 mm diameter screws placed for subaxial and 28-30 for C1 lateral mass. Screw location was assessed by post operative plain x-ray and computed tomography can (CT), besides that; the facet joint, nerve root foramen and foramen transversarium violation were also appraised.</p> <p>Results</p> <p>No patients experienced neural or vascular injury as a result of screw position. Only one patient needed screw repositioning. Six patients experienced superficial wound infection. Fifteen patients had pain around the shoulder of C5 distribution that subsided over the time. No patients developed screw pullouts or symptomatic adjacent segment disease within the period of follow up.</p> <p>Conclusion</p> <p>decompressive cervical spine laminectomy and Lateral mass screw stabilization is a technique that can be used for a variety of cervical spine pathologies with safety and efficiency.</p

    The complexities of breast cancer desmoplasia

    Get PDF
    The stromal, or 'desmoplastic', responses seen histologically in primary breast carcinomas can vary from being predominantly cellular (fibroblasts/myofibroblasts) with little collagen to being a dense acellular tissue. The mechanisms underlying the stromal response are complex; paracrine activation of myofibroblasts by growth factors is important but the contribution of cytokines/chemokines should not be ignored. A recent xenograft study has proposed that platelet-derived growth factor (PDGF) is the initiator of the desmoplastic response, but this has not been confirmed by (limited) analyses in vivo. Further studies are required to elaborate the mechanisms of the desmoplastic response, to determine its role in breast cancer progression and whether it is the same for all carcinomas

    Appetite Control across the Lifecourse: The Acute Impact of Breakfast Drink Quantity and Protein Content. The Full4Health Project

    Get PDF
    Understanding the mechanisms of hunger, satiety and how nutrients affect appetite control is important for successful weight management across the lifecourse. The primary aim of this study was to describe acute appetite control across the lifecourse, comparing age groups (children, adolescents, adults, elderly), weight categories, genders and European sites (Scotland and Greece). Participants (n = 391) consumed four test drinks, varying in composition (15% (normal protein, NP) and 30% (high protein, HP) of energy from protein) and quantity (based on 100% basal metabolic rate (BMR) and 140% BMR), on four separate days in a double-blind randomized controlled study. Ad libitum energy intake (EI), subjective appetite and biomarkers of appetite and metabolism (adults and elderly only) were measured. The adults’ appetite was significantly greater than that of the elderly across all drink types (p < 0.004) and in response to drink quantities (p < 0.001). There were no significant differences in EI between age groups, weight categories, genders or sites. Concentrations of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) were significantly greater in the elderly than the adults (p < 0.001). Ghrelin and fasting leptin concentrations differed significantly between weight categories, genders and sites (p < 0.05), while GLP-1 and PYY concentrations differed significantly between genders only (p < 0.05). Compared to NP drinks, HP drinks significantly increased postprandial GLP-1 and PYY (p < 0.001). Advanced age was concomitant with reduced appetite and elevated anorectic hormone release, which may contribute to the development of malnutrition. In addition, appetite hormone concentrations differed between weight categories, genders and geographical locations

    An observational study on the expression levels of MDM2 and MDMX proteins, and associated effects on P53 in a series of human liposarcomas

    Get PDF
    Background: Inactivation of wild type P53 by its main cellular inhibitors (MDM2 and MDMX) is a well recognised feature of tumour formation in liposarcomas. MDM2 over-expression has been detected in approximately 80% of liposarcomas but only limited information is available about MDMX over-expression. To date, we are not aware of any study that has described the patterns of MDM2 and MDMX co-expression in liposarcomas. Such information has become more pertinent as various novel MDM2 and/or MDMX single and dual affinity antagonist compounds are emerging as an alternative approach for potential targeted therapeutic strategies. Methods. We analysed a case series of 61 fully characterized liposarcomas of various sub-types by immunohistochemistry, to assess the expression levels of P53, MDM2 and MDMX, simultaneously. P53 sequencing was performed in all cases that expressed P53 protein in 10% or more of cells to rule out mutation-related over-expression. Results: 50 cases over-expressed MDM2 and 42 of these co-expressed MDMX at varying relative levels. The relative expression levels of the two proteins with respect to each other were subtype-dependent. This apparently affected the detected levels of P53 directly in two distinct patterns. Diminished levels of P53 were observed when MDM2 was significantly higher in relation to MDMX, suggesting a dominant role for MDM2 in the degradation of P53. Higher levels of P53 were noted with increasing MDMX levels suggesting an interaction between MDM2 and MDMX that resulted in a reduced efficiency of MDM2 in degrading P53. Of the 26 cases of liposarcoma with elevated P53 expression, 5 were found to have a somatic mutation in the P53 gene. Conclusions: The results suggest that complex dynamic interactions between MDM2 and MDMX proteins may directly affect the cellular levels of P53. This therefore suggests that careful characterization of both these markers will be necessary in tumours when considering in vivo evaluation of novel blocker compounds for MDM proteins, as a therapeutic strategy to restore wild type P53 function

    Surgery versus Watchful Waiting in Patients with Craniofacial Fibrous Dysplasia – a Meta-Analysis

    Get PDF
    Fibrous dysplasia (FD) is a benign bone tumor which most commonly involves the craniofacial skeleton. The most devastating consequence of craniofacial FD (CFD) is loss of vision due to optic nerve compression (ONC). Radiological evidence of ONC is common, however the management of this condition is not well established. Our objective was to compare the long-term outcome of patients with optic nerve compression (ONC) due to craniofacial fibrous dysplasia (CFD) who either underwent surgery or were managed expectantly.We performed a meta-analysis of 27 studies along with analysis of the records of a cohort of patients enrolled in National Institutes of Health (NIH) protocol 98-D-0145, entitled Screening and Natural History of Fibrous Dysplasia, with a diagnosis of CFD. The study group consisted of 241 patients; 122 were enrolled in the NIH study and 119 were extracted from cases published in the literature. The median follow-up period was 54 months (range, 6-228 months). A total of 368 optic nerves were investigated. All clinically impaired optic nerves (n = 86, 23.3%) underwent therapeutic decompression. Of the 282 clinically intact nerves, 41 (15%) were surgically decompressed and 241 (85%) were followed expectantly. Improvement in visual function was reported in fifty-eight (67.4%) of the clinically impaired nerves after surgery. In the intact nerves group, long-term stable vision was achieved in 31/45 (75.6%) of the operated nerves, compared to 229/241 (95.1%) of the non-operated ones (p = 0.0003). Surgery in asymptomatic patients was associated with visual deterioration (RR 4.89; 95% CI 2.26-10.59).Most patients with CFD will remain asymptomatic during long-term follow-up. Expectant management is recommended in asymptomatic patients even in the presence of radiological evidence of ONC

    Both Stereoselective (R)- and (S)-1-Methyl-1,2,3,4-tetrahydroisoquinoline Enantiomers Protect Striatal Terminals Against Rotenone-Induced Suppression of Dopamine Release

    Get PDF
    1-Methyl-1,2,3,4-tetrahydroisoquinoline (1MeTIQ) is present in the human and rodent brain as a mixture of stereospecific (R)- and (S)-1MeTIQ enantiomers. The racemate, (R,S)-1MeTIQ, exhibits neuroprotective activity as shown in the earlier study by the authors, and In addition, it was suggested to play a crucial physiological role in the mammalian brain as an endogenous regulator of dopaminergic activity. In this article, we investigated the influence of stereospecific enantiomers of 1MeTIQ, (R)- and (S)-1MeTIQ (50 mg/kg i.p.) on rotenone-induced (3 mg/kg s.c.) behavioral and neurochemical changes in the rat. In behavioral study, in order to record dynamic motor function of rats, we measured locomotor activity using automated locomotor activity boxes. In biochemical studies, we analyzed in rat striatum the concentration of dopamine (DA) and its metabolites: intraneuronal DOPAC, extraneuronal 3-MT, and final HVA using HPLC with electrochemical detection. Otherwise, DA release was estimated by in vivo microdialysis study. The behavioral study has demonstrated that both acute and repeated (3 times) rotenone administration unimportantly depressed a basic locomotor activity in rat. (R)- and (S)-1MeTIQ stereoisomers (50 mg/kg i.p.) produced a modest behavioral activation both in naïve and rotenone-treated rats. The data from ex vivo neurochemical experiments have shown stereospecificity of 1MeTIQ enantiomers in respect of their effects on DA catabolism. (R)-1MeTIQ significantly increased both the level of the final DA metabolite, HVA (by about 70%), and the rate of DA metabolism (by 50%). In contrast to that, (S)-1MeTIQ significantly depressed DOPAC, HVA levels (by 60 and 40%, respectively), and attenuated the rate of DA metabolism (by about 60%). On the other hand, both the enantiomers increased the concentrations of DA and its extraneuronal metabolite, 3-MT in rat striatum. In vivo microdialysis study has shown that repeated but not acute administration of rotenone produced a deep and significant functional impairment of striatal DA release. Both (R)- and (S)- stereospecific enantiomers of 1MeTIQ antagonized rotenone-induced suppression of DA release; however, the effect of (R)-1MeTIQ was more strongly expressed in microdialysis study. In conclusion, we suggest that both chiral isomers of 1MeTIQ offer neuroprotection against rotenone-induced disturbances in the function of dopaminergic neurons and (R,S)-1MeTIQ will be useful as a drug with marked neuroprotective activity in the brain

    Set Pseudophasors to Stun for Flow Cytometry

    Get PDF
    Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs) fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP) and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼ 1.5 ns vs ∼ 3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a "pseudophasor" that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation

    Comparative genomic analysis of toxin-negative strains of Clostridium difficile from humans and animals with symptoms of gastrointestinal disease

    Get PDF
    Background: Clostridium difficile infections (CDI) are a significant health problem to humans and food animals. Clostridial toxins ToxA and ToxB encoded by genes tcdA and tcdB are located on a pathogenicity locus known as the PaLoc and are the major virulence factors of C. difficile. While toxin-negative strains of C. difficile are often isolated from faeces of animals and patients suffering from CDI, they are not considered to play a role in disease. Toxin-negative strains of C. difficile have been used successfully to treat recurring CDI but their propensity to acquire the PaLoc via lateral gene transfer and express clinically relevant levels of toxins has reinforced the need to characterise them genetically. In addition, further studies that examine the pathogenic potential of toxin-negative strains of C. difficile and the frequency by which toxin-negative strains may acquire the PaLoc are needed. Results: We undertook a comparative genomic analysis of five Australian toxin-negative isolates of C. difficile that lack tcdA, tcdB and both binary toxin genes cdtA and cdtB that were recovered from humans and farm animals with symptoms of gastrointestinal disease. Our analyses show that the five C. difficile isolates cluster closely with virulent toxigenic strains of C. difficile belonging to the same sequence type (ST) and have virulence gene profiles akin to those in toxigenic strains. Furthermore, phage acquisition appears to have played a key role in the evolution of C. difficile. Conclusions: Our results are consistent with the C. difficile global population structure comprising six clades each containing both toxin-positive and toxin-negative strains. Our data also suggests that toxin-negative strains of C. difficile encode a repertoire of putative virulence factors that are similar to those found in toxigenic strains of C. difficile, raising the possibility that acquisition of PaLoc by toxin-negative strains poses a threat to human health. Studies in appropriate animal models are needed to examine the pathogenic potential of toxin-negative strains of C. difficile and to determine the frequency by which toxin-negative strains may acquire the PaLoc
    corecore