58 research outputs found

    Accurate Visuomotor Control below the Perceptual Threshold of Size Discrimination

    Get PDF
    Background: Human resolution for object size is typically determined by psychophysical methods that are based on conscious perception. In contrast, grasping of the same objects might be less conscious. It is suggested that grasping is mediated by mechanisms other than those mediating conscious perception. In this study, we compared the visual resolution for object size of the visuomotor and the perceptual system. Methodology/Principal Findings: In Experiment 1, participants discriminated the size of pairs of objects once through perceptual judgments and once by grasping movements toward the objects. Notably, the actual size differences were set below the Just Noticeable Difference (JND). We found that grasping trajectories reflected the actual size differences between the objects regardless of the JND. This pattern was observed even in trials in which the perceptual judgments were erroneous. The results of an additional control experiment showed that these findings were not confounded by task demands. Participants were not aware, therefore, that their size discrimination via grasp was veridical. Conclusions/Significance: We conclude that human resolution is not fully tapped by perceptually determined thresholds

    Meeting Report: Methylmercury in Marine Ecosystems—From Sources to Seafood Consumers

    Get PDF
    Mercury and other contaminants in coastal and open-ocean ecosystems are an issue of great concern globally and in the United States, where consumption of marine fish and shellfish is a major route of human exposure to methylmercury (MeHg). A recent National Institute of Environmental Health Sciences–Superfund Basic Research Program workshop titled “Fate and Bioavailability of Mercury in Aquatic Ecosystems and Effects on Human Exposure,” convened by the Dartmouth Toxic Metals Research Program on 15–16 November 2006 in Durham, New Hampshire, brought together human health experts, marine scientists, and ecotoxicologists to encourage cross-disciplinary discussion between ecosystem and human health scientists and to articulate research and monitoring priorities to better understand how marine food webs have become contaminated with MeHg. Although human health effects of Hg contamination were a major theme, the workshop also explored effects on marine biota. The workgroup focused on three major topics: a) the biogeochemical cycling of Hg in marine ecosystems, b) the trophic transfer and bioaccumulation of MeHg in marine food webs, and c) human exposure to Hg from marine fish and shellfish consumption. The group concluded that current understanding of Hg in marine ecosystems across a range of habitats, chemical conditions, and ocean basins is severely data limited. An integrated research and monitoring program is needed to link the processes and mechanisms of MeHg production, bioaccumulation, and transfer with MeHg exposure in humans

    The Bank of Standardized Stimuli (BOSS), a New Set of 480 Normative Photos of Objects to Be Used as Visual Stimuli in Cognitive Research

    Get PDF
    There are currently stimuli with published norms available to study several psychological aspects of language and visual cognitions. Norms represent valuable information that can be used as experimental variables or systematically controlled to limit their potential influence on another experimental manipulation. The present work proposes 480 photo stimuli that have been normalized for name, category, familiarity, visual complexity, object agreement, viewpoint agreement, and manipulability. Stimuli are also available in grayscale, blurred, scrambled, and line-drawn version. This set of objects, the Bank Of Standardized Stimuli (BOSS), was created specifically to meet the needs of scientists in cognition, vision and psycholinguistics who work with photo stimuli

    The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences

    Get PDF

    Abnormal air righting behaviour in the spontaneously hypertensive rat model of ADHD

    No full text
    The spontaneously hypertensive rat (SHR) is the most commonly used model of attention-deficit hyperactivity disorder (ADHD), displaying the main symptoms of the disorder which are responsive to psychostimulant treatments. Research to date has focused on behavioural tests investigating functioning of the striatum or prefrontal cortex in these rats. However, there is now evidence that the superior colliculus, a structure associated with head and eye movements, may also be dysfunctional in ADHD. Therefore, the aim of this study was to investigate whether the SHR demonstrated impairment in collicular-dependent behaviour. To this end, we examined air righting behaviour, which has previously been shown to be modulated in a height-dependent manner reliant on a functional superior colliculus. We assessed SHR, Wistar Kyotos and Wistars on static righting and air righting at 50 and 10 cm drop heights. There were no differences in static righting, indicating that there were no gross motor differences that would confound air righting. Qualitative analysis of video footage of the righting did not reveal any changes previously associated with collicular damage, unique to the SHR. However, the SHR did show impairment in height-dependent modulation of righting in contrast to both control strains, such that the SHR failed to modulate righting latency according to drop height. This failure is indicative of collicular abnormality. Given that many rodent tests of attentional mechanisms involve head and eye orienting, which are heavily dependent on the colliculus, a collicular dysfunction has strong implications for the type of attentional task used in this strain

    COSFIRE : A Brain-Inspired Approach to Visual Pattern Recognition

    Get PDF
    The primate visual system has an impressive ability to generalize and to discriminate between numerous objects and it is robust to many geometrical transformations as well as lighting conditions. The study of the visual system has been an active reasearch field in neuropysiology for more than half a century. The construction of computational models of visual neurons can help us gain insight in the processing of information in visual cortex which we can use to provide more robust solutions to computer vision applications. Here, we demonstrate how inspiration from the functions of shape-selective V4 neurons can be used to design trainable filters for visual pattern recognition. We call this approach COSFIRE, which stands for Combination of Shifted Filter Responses. We illustrate how a COSFIRE filter can be configured to be selective for the spatial arrangement of lines and/or edges that form the shape of a given prototype pattern. Finally, we demonstrate the effectiveness of the COSFIRE approach in three applications: the detection of vascular bifurcations in retinal fundus images, the localization and recognition of traffic signs in complex scenes and the recognition of handwritten digits. This work is a further step in understanding how visual information is processed in the brain and how information on pixel intensities is converted into information about objects. We demonstrate how this understanding can be used for the design of effective computer vision algorithms

    A brain-damaged patient with an unusual perceptuomotor deficit

    No full text
    When interacting with objects, the pattern of movements is influenced by such object characteristics as size and position. Little is known about the effect of higher level categorical encoding of objects upon movements. Here we present evidence for an approval-for-action process which takes into account such encoding. For the brain-damaged subject L.P., the ability to complete actions involving two objects in central vision is influenced by the semantic or functional relationship between the objects. Even though she perceives only one object, she can integrate two related objects into a coordinated action. If the objects are not related she is unable to integrate them into a single motor act. We propose that selection-for-action systems include processes which gate conceptually the behavioural disposition to action
    corecore