202 research outputs found

    New targets for therapy in breast cancer: Small molecule tyrosine kinase inhibitors

    Get PDF
    Over the past several years many advances have been made in our understanding of critical pathways involved in carcinogenesis and tumor growth. These advances have led to the investigation of small molecule inhibitors of the ErbB family of receptor tyrosine kinases across a broad spectrum of malignancies. In this article we summarize the rationale for targeting members of the ErbB family in breast cancer, and review the preclinical and clinical data for the agents that are furthest in development. In addition, we highlight directions for future research, such as exploration of the potential crosstalk between the ErbB and hormone receptor signal transduction pathways, identification of predictive markers for tumor sensitivity, and development of rational combination regimens that include the tyrosine kinase inhibitors

    Konstruktivistische Ansätze in der Erwachsenenbildung und Weiterbildung

    Get PDF
    Theoretical approaches in the field of further education and advanced vocational training have to face multifaceted demands: the analysis of knowledge aquisition and knowledge transfer and its instructional support as well as the revealment of the mechanisms which influence further education on an organisational level in companies. This article describes, that herefore especially moderate constructivistic approaches are useful. After an introduction to the philosophical tradition of these approaches and important characteristics of adult learning, two examples of constructivistic models are being described particularly: The theory of situated learning environments and career counseling. Concluding it is shown, that a moderate constructive perspective fulfils important criteria for the theoretic modelling of further education processes.Theoretische Ansätze in der Erwachsenen- und insbesondere in der beruflichen Weiterbildung müssen sich vielfältigen Ansprüchen stellen: der Analyse des Wissenserwerbs und Wissenstransfers und seiner instruktionalen Unterstützung ebenso wie der Aufdeckung der Mechanismen, die in den Betrieben auf organisatorischer Ebene die Weiterbildung beeinflussen. In diesem Beitrag wird die Auffassung vertreten, daß dafür insbesondere liberalisierte konstruktivistische Ansätze gut geeignet sind. Nach einer Einführung in die philosophische Tradition dieser Ansätze und wichtiger Merkmale des Lernens im Erwachsenenalter werden zwei Beispiele konstruktivistischer Modelle genauer beschrieben: die Theorie situierter Lernumgebungen und das career counseling. Abschließend wird gezeigt, daß eine liberalisierte konstruktivistische Perspektive wichtige Kriterien für die theoretische Modellierung von Weiterbildungsprozessen erfüllt

    Caspase deficiency alters the murine gut microbiome

    Get PDF
    Caspases are aspartate-specific cysteine proteases that have an essential role in apoptosis and inflammation, and contribute to the maintenance of homeostasis in the intestine. These facts, together with the knowledge that caspases are implicated in host-microbe crosstalk, prompted us to investigate the effect of caspase (Casp)1, -3 and -7 deficiency on the composition of the murine gut microbiota. We observed significant changes in the abundance of the Firmicutes and Bacteroidetes phyla, in particular the Lachnospiraceae, Porphyromonodaceae and Prevotellacea families, when comparing Casp-1, -7 and -3 knockout mice with wild-type mice. Our data point toward an intricate relationship between these caspases and the composition of the murine gut microflora

    Fluids and barriers of the CNS: a historical viewpoint

    Get PDF
    Tracing the exact origins of modern science can be a difficult but rewarding pursuit. It is possible for the astute reader to follow the background of any subject through the many important surviving texts from the classical and ancient world. While empirical investigations have been described by many since the time of Aristotle and scientific methods have been employed since the Middle Ages, the beginnings of modern science are generally accepted to have originated during the 'scientific revolution' of the 16th and 17th centuries in Europe. The scientific method is so fundamental to modern science that some philosophers consider earlier investigations as 'pre-science'. Notwithstanding this, the insight that can be gained from the study of the beginnings of a subject can prove important in the understanding of work more recently completed. As this journal undergoes an expansion in focus and nomenclature from cerebrospinal fluid (CSF) into all barriers of the central nervous system (CNS), this review traces the history of both the blood-CSF and blood-brain barriers from as early as it was possible to find references, to the time when modern concepts were established at the beginning of the 20th century

    The role of DNA microarrays in Toxoplasma gondii research, the causative agent of ocular toxoplasmosis

    Get PDF
    Ocular toxoplasmosis, which is caused by the protozoan parasite Toxoplasma gondii, is the leading cause of retinochoroiditis. Toxoplasma is an obligate intracellular pathogen that replicates within a parasitophorous vacuole. Infections are initiated by digestion of parasites deposited in cat feces or in undercooked meat. Parasites then disseminate to target tissues that include the retina where they then develop into long-lived asymptomatic tissue cysts. Occasionally, cysts reactivate and growth of newly emerged parasites must be controlled by the host’s immune system or disease will occur. The mechanisms by which Toxoplasma grows within its host cell, encysts, and interacts with the host’s immune system are important questions. Here, we will discuss how the use of DNA microarrays in transcriptional profiling, genotyping, and epigenetic experiments has impacted our understanding of these processes. Finally, we will discuss how these advances relate to ocular toxoplasmosis and how future research on ocular toxoplasmosis can benefit from DNA microarrays

    Oxidative protein labeling in mass-spectrometry-based proteomics

    Get PDF
    Oxidation of proteins and peptides is a common phenomenon, and can be employed as a labeling technique for mass-spectrometry-based proteomics. Nonspecific oxidative labeling methods can modify almost any amino acid residue in a protein or only surface-exposed regions. Specific agents may label reactive functional groups in amino acids, primarily cysteine, methionine, tyrosine, and tryptophan. Nonspecific radical intermediates (reactive oxygen, nitrogen, or halogen species) can be produced by chemical, photochemical, electrochemical, or enzymatic methods. More targeted oxidation can be achieved by chemical reagents but also by direct electrochemical oxidation, which opens the way to instrumental labeling methods. Oxidative labeling of amino acids in the context of liquid chromatography(LC)–mass spectrometry (MS) based proteomics allows for differential LC separation, improved MS ionization, and label-specific fragmentation and detection. Oxidation of proteins can create new reactive groups which are useful for secondary, more conventional derivatization reactions with, e.g., fluorescent labels. This review summarizes reactions of oxidizing agents with peptides and proteins, the corresponding methodologies and instrumentation, and the major, innovative applications of oxidative protein labeling described in selected literature from the last decade

    Neutrinos

    Get PDF
    229 pages229 pages229 pagesThe Proceedings of the 2011 workshop on Fundamental Physics at the Intensity Frontier. Science opportunities at the intensity frontier are identified and described in the areas of heavy quarks, charged leptons, neutrinos, proton decay, new light weakly-coupled particles, and nucleons, nuclei, and atoms

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
    corecore