206 research outputs found

    Evaluation of biospheric components in earth system models using modern and palaeo-observations: The state-of-the-art

    Get PDF
    PublishedJournal ArticleEarth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate-carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process-and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes. © 2013 Author(s).This paper emerged from the GREENCYCLESII mini-conference “Evaluation of Earth system models using modern and palaeo-observations” held at Clare College, Cambridge, UK, in September 2012. We would like to thank the Marie Curie FP7 Research and Training Network GREENCYCLESII for providing funding which made this meeting possible. Research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7 2007–2013) under grant agreement no. 238366. The work of C. D. Jones was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). N. R. Edwards acknowledges support from FP7 grant no. 265170 (ERMITAGE). N. Vázquez Riveiros acknowledges support from the AXA Research Fund and the Newton Trust

    Strongly magnetized pulsars: explosive events and evolution

    Full text link
    Well before the radio discovery of pulsars offered the first observational confirmation for their existence (Hewish et al., 1968), it had been suggested that neutron stars might be endowed with very strong magnetic fields of 101010^{10}-101410^{14}G (Hoyle et al., 1964; Pacini, 1967). It is because of their magnetic fields that these otherwise small ed inert, cooling dead stars emit radio pulses and shine in various part of the electromagnetic spectrum. But the presence of a strong magnetic field has more subtle and sometimes dramatic consequences: In the last decades of observations indeed, evidence mounted that it is likely the magnetic field that makes of an isolated neutron star what it is among the different observational manifestations in which they come. The contribution of the magnetic field to the energy budget of the neutron star can be comparable or even exceed the available kinetic energy. The most magnetised neutron stars in particular, the magnetars, exhibit an amazing assortment of explosive events, underlining the importance of their magnetic field in their lives. In this chapter we review the recent observational and theoretical achievements, which not only confirmed the importance of the magnetic field in the evolution of neutron stars, but also provide a promising unification scheme for the different observational manifestations in which they appear. We focus on the role of their magnetic field as an energy source behind their persistent emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of "NewCompStar" European COST Action MP1304, 43 pages, 8 figure

    Effects of Grassland Management Practices on Ant Functional Groups in Central North America

    Get PDF
    Tallgrass prairies of central North America have experienced disturbances including fire and grazing for millennia. Little is known about the effects of these disturbances on prairie ants, even though ants are thought to play major roles in ecosystem maintenance. We implemented three management treatments on remnant and restored grassland tracts in the central U.S., and compared the effects of treatment on abundance of ant functional groups. Management treatments were: (1) patch-burn graze—rotational burning of three spatially distinct patches within a fenced tract, and growing-season cattle grazing; (2) graze-and-burn—burning entire tract every 3 years, and growing-season cattle grazing, and (3) burn-only—burning entire tract every 3 years, but no cattle grazing. Ant species were classified into one of four functional groups. Opportunist ants and the dominant ant species, Formica montana, were more abundant in burn-only tracts than tracts managed with either of the grazing treatments. Generalists were more abundant in graze-and-burn tracts than in burn-only tracts. Abundance of F. montana was negatively associated with pre-treatment time since fire, whereas generalist ant abundance was positively associated. F. montanawere more abundant in restored tracts than remnants, whereas the opposite was true for subdominants and opportunists. In summary, abundance of the dominant F. montana increased in response to intense disturbances that were followed by quick recovery of plant biomass. Generalist ant abundance decreased in response to those disturbances, which we attribute to the effects of competitive dominance of F. montana upon the generalists

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Synaptic AMPA receptor composition in development, plasticity and disease

    Get PDF

    Varieties of living things: Life at the intersection of lineage and metabolism

    Get PDF
    publication-status: Publishedtypes: Articl

    Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus

    Get PDF
    Background Elucidating the process of speciation requires an in-depth understanding of the evolutionary history of the species in question. Studies that rely upon a limited number of genetic loci do not always reveal actual evolutionary history, and often confuse inferences related to phylogeny and speciation. Whole-genome data, however, can overcome this issue by providing a nearly unbiased window into the patterns and processes of speciation. In order to reveal the complexity of the speciation process, we sequenced and analyzed the genomes of 10 wild pigs, representing morphologically or geographically well-defined species and subspecies of the genus Sus from insular and mainland Southeast Asia, and one African common warthog. Results Our data highlight the importance of past cyclical climatic fluctuations in facilitating the dispersal and isolation of populations, thus leading to the diversification of suids in one of the most species-rich regions of the world. Moreover, admixture analyses revealed extensive, intra- and inter-specific gene-flow that explains previous conflicting results obtained from a limited number of loci. We show that these multiple episodes of gene-flow resulted from both natural and human-mediated dispersal. Conclusions Our results demonstrate the importance of past climatic fluctuations and human mediated translocations in driving and complicating the process of speciation in island Southeast Asia. This case study demonstrates that genomics is a powerful tool to decipher the evolutionary history of a genus, and reveals the complexity of the process of speciation

    Falciparum malaria and HIV-1 in hospitalized adults in Maputo, Mozambique: does HIV-infection obscure the malaria diagnosis?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential impact of HIV-1 on falciparum malaria has been difficult to determine because of diagnostic problems and insufficient epidemiological data.</p> <p>Methods</p> <p>In a prospective, cross-sectional study, clinical and laboratory data was registered consecutively for all adults admitted to a medical ward in the Central Hospital of Maputo, Mozambique, during two months from 28<sup>th </sup>October 2006. Risk factors for fatal outcome were analysed. The impact of HIV on the accuracy of malaria diagnosis was assessed, comparing "Presumptive malaria", a diagnosis assigned by the ward clinicians based on fever and symptoms suggestive of malaria in the absence of signs of other infections, and "Verified malaria", a malaria diagnosis that was not rejected during retrospective review of all available data.</p> <p>Results</p> <p>Among 333 included patients, fifteen percent (51/333) had "presumptive malaria", ten percent (28 of 285 tested persons) had positive malaria blood slides, while 69.1% (188/272) were HIV positive. Seven percent (n = 23) had "verified malaria", after the diagnosis was rejected in patients with neck stiffness or symptom duration longer than 2 weeks (n = 5) and persons with negative (n = 19) or unknown malaria blood slide (n = 4). Clinical stage of HIV infection (CDC), hypotension and hypoglycaemia was associated with fatal outcome. The "presumptive malaria" diagnosis was rejected more frequently in HIV positive (20/31) than in HIV negative patients (2/10, p = 0.023).</p> <p>Conclusion</p> <p>The study suggests that the fraction of febrile illness attributable to malaria is lower in HIV positive adults. HIV testing should be considered early in evaluation of patients with suspected malaria.</p
    corecore