44 research outputs found

    Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry

    No full text
    Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 × 10−6), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 × 10−11) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 × 10−10). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region—the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r2 = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case–case P ≤ 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer

    Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry

    Get PDF
    Contains fulltext : 167299.pdf (publisher's version ) (Closed access)Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 x 10(-6)), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 x 10(-11)) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 x 10(-10)). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region-the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r(2) = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case-case P </= 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer

    Stage T1c prostate cancer: defining the appropriate staging evaluation and the role for pelvic lymphadenectomy

    Full text link
    A good staging system should be able to accurately reflect the natural history of a malignant disease, to express the extent of the disease at the time of diagnosis, and stratify patients in prognostically distinctive groups. The staging system for prostate cancer, as it is today, fails to fulfill these requirements. Approximately one third of the patients who undergo surgery for complete excision of prostate cancer in fact do not have a localize disease. The incidence of tumor at the inked margin may reach 30% for T1 stage and up to 60% for clinical T2b prostate cancer according to comparision with pathologic examination of resected specimen. Several concepts have been recently proposed as a means of improving the accuracy of the available staging system. In this paper, we review current aspects of clinical and pathological staging of prostate cancer, and the importance of these new concepts on the early stages of prostate cancer.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47057/1/345_2005_Article_BF01300182.pd

    A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PSA-directed prostate cancer screening leads to a high rate of false positive identifications and an unnecessary biopsy burden. Epigenetic biomarkers have proven useful, exhibiting frequent and abundant inactivation of tumor suppressor genes through such mechanisms. An epigenetic, multiplex PCR test for prostate cancer diagnosis could provide physicians with better tools to help their patients. Biomarkers like <it>GSTP1</it>, <it>APC</it> and <it>RASSF1</it> have demonstrated involvement with prostate cancer, with the latter two genes playing prominent roles in the field effect. The epigenetic states of these genes can be used to assess the likelihood of cancer presence or absence.</p> <p>Results</p> <p>An initial test cohort of 30 prostate cancer-positive samples and 12 cancer-negative samples was used as basis for the development and optimization of an epigenetic multiplex assay based on the <it>GSTP1</it>, <it>APC</it> and <it>RASSF1</it> genes, using methylation specific PCR (MSP). The effect of prostate needle core biopsy sample volume and age of formalin-fixed paraffin-embedded (FFPE) samples was evaluated on an independent follow-up cohort of 51 cancer-positive patients. Multiplexing affects copy number calculations in a consistent way per assay. Methylation ratios are therefore altered compared to the respective singleplex assays, but the correlation with patient outcome remains equivalent. In addition, tissue-biopsy samples as small as 20 μm can be used to detect methylation in a reliable manner. The age of FFPE-samples does have a negative impact on DNA quality and quantity.</p> <p>Conclusions</p> <p>The developed multiplex assay appears functionally similar to individual singleplex assays, with the benefit of lower tissue requirements, lower cost and decreased signal variation. This assay can be applied to small biopsy specimens, down to 20 microns, widening clinical applicability. Increasing the sample volume can compensate the loss of DNA quality and quantity in older samples.</p

    Prostatic specific antigen for prostate cancer detection

    No full text
    Prostate-specific antigen (PSA) has been used for prostate cancer detection since 1994. PSA testing has revolutionized our ability to diagnose, treat, and follow-up patients. In the last two decades, PSA screening has led to a substantial increase in the incidence of prostate cancer (PC). This increased detection caused the incidence of advanced-stage disease to decrease at a dramatic rate, and most newly diagnosed PC today are localized tumors with a high probability of cure. PSA screening is associated with a 75% reduction in the proportion of men who now present with metastatic disease and a 32.5% reduction in the age-adjusted prostate cancer mortality rate through 2003. Although PSA is not a perfect marker, PSA testing has limited specificity for prostate cancer detection, and its appropriate clinical application remains a topic of debate. Due to its widespread use and increased over-detection, the result has been the occurrence of over-treatment of indolent cancers. Accordingly, several variations as regards PSA measurement have emerged as useful adjuncts for prostate cancer screening. These procedures take into consideration additional factors, such as the proportion of different PSA isoforms (free PSA, complexed PSA, pro-PSA and B PSA), the prostate volume (PSA density), and the rate of change in PSA levels over time (PSA velocity or PSA doubling time). The history and evidence underlying each of these parameters are reviewed in the following article
    corecore