64 research outputs found

    Revealing the electroweak properties of a new scalar resonance

    Get PDF
    One or more new heavy resonances may be discovered in experiments at the CERN Large Hadron Collider. In order to determine if such a resonance is the long-awaited Higgs boson, it is essential to pin down its spin, CP, and electroweak quantum numbers. Here we describe how to determine what role a newly-discovered neutral CP-even scalar plays in electroweak symmetry breaking, by measuring its relative decay rates into pairs of electroweak vector bosons: WW, ZZ, \gamma\gamma, and Z\gamma. With the data-driven assumption that electroweak symmetry breaking respects a remnant custodial symmetry, we perform a general analysis with operators up to dimension five. Remarkably, only three pure cases and one nontrivial mixed case need to be disambiguated, which can always be done if all four decay modes to electroweak vector bosons can be observed or constrained. We exhibit interesting special cases of Higgs look-alikes with nonstandard decay patterns, including a very suppressed branching to WW or very enhanced branchings to \gamma\gamma and Z\gamma. Even if two vector boson branching fractions conform to Standard Model expectations for a Higgs doublet, measurements of the other two decay modes could unmask a Higgs imposter.Comment: 23 pages, two figures; v2: minor revision and version to appear in JHE

    Probing natural SUSY from stop pair production at the LHC

    Full text link
    We consider the natural supersymmetry scenario in the framework of the R-parity conserving minimal supersymmetric standard model (called natural MSSM) and examine the observability of stop pair production at the LHC. We first scan the parameters of this scenario under various experimental constraints, including the SM-like Higgs boson mass, the indirect limits from precision electroweak data and B-decays. Then in the allowed parameter space we study the stop pair production at the LHC followed by the stop decay into a top quark plus a lightest neutralino or into a bottom quark plus a chargino. From detailed Monte Carlo simulations of the signals and backgrounds, we find the two decay modes are complementary to each other in probing the stop pair production, and the LHC with s=14\sqrt{s}= 14 TeV and 100 fb1fb^{-1} luminosity is capable of discovering the stop predicted in natural MSSM up to 450 GeV. If no excess events were observed at the LHC, the 95% C.L. exclusion limits of the stop masses can reach around 537 GeV.Comment: 19 pages, 10 figures, version accepted by JHE

    Deciphering Universal Extra Dimension from the top quark signals at the CERN LHC

    Get PDF
    Models based on Universal Extra Dimensions predict Kaluza-Klein (KK) excitations of all Standard Model (SM) particles. We examine the pair production of KK excitations of top- and bottom-quarks at the Large Hadron Collider. Once produced, the KK top/bottom quarks can decay to bb-quarks, leptons and the lightest KK-particle, γ1\gamma_1, resulting in 2 bb-jets, two opposite sign leptons and missing transverse momentum, thereby mimicing top-pair production. We show that, with a proper choice of kinematic cuts, an integrated luminosity of 100 fb1^{-1} would allow a discovery for an inverse radius upto R1=750R^{-1} = 750 GeV.Comment: 18 pages, 14 figures, Accepted for publication in JHE

    Searching for Heavy Charged Higgs Boson with Jet Substructure at the LHC

    Full text link
    We study the heavy charged Higgs boson (from 800 GeV to 1500 GeV in this study) in production associated with a top quark at the LHC with the collision energy s=14\sqrt{s}=14 TeV. Such a heavy charged Higgs boson can dominantly decay into a top quark and a bottom quark due to its large Yukawa couplings, like in MSSM. To suppress background events and to confirm the signal, we reconstruct the mass bumps of the heavy charged Higgs boson and the associated top quark. For this purpose, we propose a hybrid-R reconstruction method which utilizes the top tagging technique, a jet substructure technique developed for highly boosted massive particles. By using the full hadronic mode of ppH±tttbp p \to H^{\pm} t \to t tb as a test field, we find that this method can greatly reduce the combinatorics in the full reconstruction and can successfully reduce background events down to a controlled level. The sensitivity of LHC to the heavy charged Higgs boson with two bb taggings is studied and a 9.5σ9.5\sigma significance can be achieved when mH±=1TeVm_{H^\pm} =1 \textrm{TeV}.Comment: 27 pages, 10 figures, 7 tables; v2: some typos corrected and references added; v3: discussion added, Fig.10 and Table7 updated, version published in JHE

    Supersymmetric Monojets at the Large Hadron Collider

    Get PDF
    Supersymmetric monojets may be produced at the Large Hadron Collider by the process qg -> squark neutralino_1 -> q neutralino_1 neutralino_1, leading to a jet recoiling against missing transverse momentum. We discuss the feasibility and utility of the supersymmetric monojet signal. In particular, we examine the possible precision with which one can ascertain the neutralino_1-squark-quark coupling via the rate for monojet events. Such a coupling contains information on the composition of the neutralino_1 and helps bound dark matter direct detection cross-sections and the dark matter relic density of the neutralino_1. It also provides a check of the supersymmetric relation between gauge couplings and gaugino-quark-squark couplings.Comment: 46 pages, 10 figures. The appendix has been rewritten to correct an error that appears in all previous versions of the appendix. This error has no effect on the results in the main body of the pape

    Exclusive Signals of an Extended Higgs Sector

    Full text link
    Expectations for the magnitude of Higgs boson signals in standard Higgs search channels at the LHC relative to Standard Model (SM) expectations are investigated within the framework of various types of CP and flavor conserving two Higgs doublet models (2HDMs). Signals of the SM-like Higgs boson in different classes of 2HDM may be parameterized in terms of particular two-dimensional sub-spaces of the general four-dimensional space of Higgs couplings to the massive vector bosons, top quark, bottom quark, and tau lepton. We find fairly strong correlations among the inclusive di-photon channel and the exclusive di-photon and di-tau channels from vector boson fusion or associated production. Order one deviations from SM expectations in some of these channels could provide discriminating power among various types of 2HDMs. The ratio of exclusive di-photon to di-tau channels is particularly sensitive to deviations from SM expectations. We also emphasize that deviations from SM expectations in standard Higgs search channels may imply observable signals of non-SM-like Higgs bosons in some of these same channels, in particular in di-photon and di-vector boson channels. The results cataloged here provide a roadmap for interpreting standard Higgs search channels in the context of 2HDMs.Comment: 24 pages, 14 figures, 3 tables; v2: minor corrections, extended discussion of current Higgs signals; version appearing in JHE

    How Similar Are the Mice to Men? Between-Species Comparison of Left Ventricular Mechanics Using Strain Imaging

    Get PDF
    BACKGROUND: While mammalian heart size maintains constant proportion to whole body size, scaling of left ventricular (LV) function parameters shows a more complex scaling pattern. We used 2-D speckle tracking strain imaging to determine whether LV myocardial strains and strain rates scale to heart size. METHODS: We studied 18 mice, 15 rats, 6 rabbits, 12 dogs and 20 human volunteers by 2-D echocardiography. Relationship between longitudinal or circumferential strains/strain rates (S(Long)/SR(Long), S(Circ)/SR(Circ)), and LV end-diastolic volume (EDV) or mass were assessed by the allometric (power-law) equation Y = kM(β). RESULTS: Mean LV mass in individual species varied from 0.038 to 134 g, LV EDV varied from 0.015 to 102 ml, while RR interval varied from 81 to 1090 ms. While S(Long) increased with increasing LV EDV or mass (β values 0.047±0.006 and 0.051±0.005, p<0.0001 vs. 0 for both) S(Circ) was unchanged (p = NS for both LV EDV or mass). Systolic and diastolic SR(Long) and SR(Circ) showed inverse correlations to LV EDV or mass (p<0.0001 vs. 0 for all comparisons). The ratio between S(Long) and S(Circ) increased with increasing values of LV EDV or mass (β values 0.039±0.010 and 0.040±0.011, p>0.0003 for both). CONCLUSIONS: While S(Circ) is unchanged, S(Long) increases with increasing heart size, indicating that large mammals rely more on long axis contribution to systolic function. SR(Long) and SR(Circ), both diastolic and systolic, show an expected decrease with increasing heart size

    The effective Standard Model after LHC Run I

    Get PDF
    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension- 6 operators on electroweak precision tests that is more general than the standard S, T formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run 1. We illustrate the combined constraints with the example of the two-Higgs doublet model
    corecore