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Abstract We present a complete set of helicity-dependent
2 → 3 antenna functions for QCD initial- and final-state radi-
ation. The functions are implemented in the Vincia shower
Monte Carlo framework and are used to generate showers
for hadron-collider processes in which helicities are explic-
itly sampled (and conserved) at each step of the evolution.
Although not capturing the full effects of spin correlations,
the explicit helicity sampling does permit a significantly
faster evaluation of fixed-order matrix-element corrections.
A further speed increase is achieved via the implementa-
tion of a new fast library of analytical MHV amplitudes,
while matrix elements from Madgraph are used for non-
MHV configurations. A few examples of applications to
QCD 2 → 2 processes are given, comparing the newly
released Vincia 2.200 to Pythia 8.226.

1 Introduction

The description of bremsstrahlung processes in parton-
shower event generators typically starts from the proba-
bility density for unpolarised partons to emit unpolarised
radiation, i.e., DGLAP kernels or dipole/antenna functions
summed over outgoing and averaged over incoming polari-
sations/helicities. One way of incorporating nontrivial polar-
isation effects, used in Pythia [1], is to correlate the plane
in which a gluon is produced, with the plane in which it
subsequently branches, taking linear-polarisation effects into
account on the intermediate propagator, and casting the result
in terms of a non-uniform selection of the azimuthal ϕ angle
around the direction of the branching gluon, see, e.g., [2]. A
more complete, but also more cumbersome, alternative, used
in Herwig [3], is to keep track of spin correlations explicitly,
using a spin-density matrix formalism [4–6]. In both cases,
the nontrivial angular correlations ultimately arise from dot
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products between reference vectors expressing linear polar-
isations.

By contrast, a helicity basis does not rely on any external
reference vectors, and hence helicity-dependence in and of
itself does not generate any nontrivial angular correlations.
Nonetheless, helicity-dependent radiation functions, as used
for final-state radiation in Vincia for a few years [7], do have
some advantages: helicity conservation can be made explicit,
allowing to trace helicities through the shower; unphysi-
cal helicity configurations are prevented from contributing
to sums and averages; and the explicit helicity assignments
allow faster evaluations of matrix-element correction (MEC)
factors, since only a single (or a few) helicity amplitudes need
to be evaluated for each ME-corrected parton state [7].

The concept of ME corrections was first developed to
improve the description of radiation in Pythia (then called
Jetset) outside the collinear region to agree with first-order
matrix elements for e+e− → 3 jets [8,9], and was since
extended to correct the first emission in a wide range of
resonance-decay processes and some (colour-singlet) pro-
duction processes [10,11]. It was also used as a compo-
nent of the first ME correction strategies in Herwig [12,13],
and it forms the basis of the treatment of real corrections
within the Powheg formalism [14,15]. We note that, in
these approaches, only the first shower emission is corrected,
essentially by applying a multiplicative factor,

RMEC = ME

PS
, (1)

to the shower kernels, where ME is the relevant matrix-
element expression (typically called “R” in Powheg nota-
tion) and PS represents the (sum of) parton-shower contribu-
tions to the given phase-space point.

The limitation to single emissions was lifted by the devel-
opment of iterated ME corrections [16],1 implemented in

1 We note that a form of iterated ME corrections is also used throughout
the Pythia showers to impose quark-mass corrections [11], but the
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Vincia [17,18], again first in the context of e+e− →
jets [16] and subsequently for hadron collisions [18,19].
Importantly, the most recent study in [19] extended the for-
malism to strongly-ordered and non-Markovian shower algo-
rithms, expanding its applicability to essentially any shower
algorithm in modern MC generators. Although a helicity-
dependent (and hence computationally faster) version of the
iterated-MEC algorithm was developed for final-state radia-
tion [7], a fully-fledged helicity-dependent version for hadron
collisions (and for strongly-ordered non-Markovian show-
ers) has so far been missing. The aim of this paper is to
develop this missing piece, while simultaneously presenting
a complete set of helicity-dependent (and positive-definite)
antenna functions for 2 → 3 branchings for both initial- and
final-state radiation. In addition, some helicity configurations
(called “maximally helicity violating”) can be expressed in
compact analytical forms, hence we use such amplitudes
for QCD 2 → n processes whenever possible to speed up
the calculation further. For non-MHV configurations, we use
matrix elements from Madgraph 4 [20]. (Note that the use
of Madgraph 4 puts some limitations on the configurations
for which the relevant information for MEC factors can be
extracted easily from the matrix elements. In particular, this
is the case for amplitudes with multiple quark pairs. These
limitations will be lifted by a new interface to Madgraph 5
which is currently under development [21].)

This article is organised as follows. In Sect. 2, we give
an overview over the helicity-dependent shower in Vincia,
including the extension to initial-state radiation The matrix-
element correction formalism is reviewed in short in Sect. 3
together with a brief introduction to the MHV amplitudes
in Vincia. Results are presented in Sect. 4, before giving
some concluding remarks in Sect. 5. The helicity-dependent
antenna functions are given in Appendix A. Appendix B sum-
marises a few changes in the Vincia code which we deem
relevant to ensure that results obtained with the new imple-
mentation may be interpreted correctly, in particular in com-
parison with results obtained with earlier versions.

2 Helicity-dependent showers

A helicity-dependent antenna shower for final-state radiation
has already been introduced in [7]. The extension to hadronic
initial states is straightforward. We start with a brief review
of how emissions are generated and helicities selected. In
cases where an event with unpolarised partons is showered by
Vincia, a polariser function is first called, which uses helicity
matrix elements to assign explicit helicities to all partons.

Footnote 1 continued
resulting process-dependent nonsingular terms will still only be fully
correct for the first emission.

Since the events are also assigned colour flows, we first define
the joint probability to select a parton configuration with a
colour flow i and a set of helicities h,

P(h, i) = FCh

∑
h′ FCh′

︸ ︷︷ ︸
Helicity-Selection Factor

× LCh
i∑

j LCh
j

︸ ︷︷ ︸
Colour-Flow Selection Factor

, (2)

where the full-colour (FC) and leading-colour (LC) matrix
elements squared are defined by

FCh =
∑

i, j

Mh
i Mh∗

j (3)

LCh
i = |Mh

i |2 (4)

with Mi the amplitude for colour-ordering i . We also make
use of the notation

VCh
i = FCh LCh

i∑
j LCh

j

(5)

for the fraction of the full-colour helicity matrix element
squared that is projected onto LC colour flow i .

As written here, the easiest would be to start by generating
a helicity configuration, using the first factor in Eq. (2) and
then subsequently generate a colour flow using the second
factor. For events which already have colour-flow assign-
ments, the conditional probability for choosing helicity con-
figuration h is simplest to define in terms of the redefined LC
matrix elements,

P(h|i) = VCh
i

∑
h′ VCh′

i

. (6)

(If the corresponding matrix elements do not exist in Vin-
cia, the event will remain unpolarised and showered using
helicity-averaged and -summed antenna functions.)

For events with explicit helicities, trial branchings are gen-
erated just as in the helicity-independent shower, i.e., using
unpolarised trial-antenna function overestimates. After gen-
erating the post-branching kinematics (see, e.g., [17,18]),
the total probability for accepting a branching (denoting pre-
branching partons by AB and post-branching ones by i jk)2

is:

Paccept = Aphys

Atrial
=

∑
hi ,h j ,hk A

(
hA, hB; hi , h j , hk

)

Atrial
, (7)

for fixed helicities hA,B of the parent partons. The sum over
daughter helicities, hi, j,k , in the physical antenna function,

2 This is the same labelling convention as used in the Vincia reference
for final-state helicity showers [7].

123



Eur. Phys. J. C (2017) 77 :719 Page 3 of 17 719

Aphys, runs over all possible (physical) helicities for the
i jk partons, with each term, A (

hA, hB; hi , h j , hk
)
, being

a helicity-dependent antenna function. To avoid clutter, and
for ease of reference, we collect the precise forms for these
functions in the appendix. We note that some of the func-
tions differ (by nonsingular terms) from those used in pre-
vious versions of Vincia, in particular those in [7,18]. We
also note that the accept probability defined by Eq. (7) is
in general identical to the unpolarised one (i.e., where one
averages over hA and hB as well), up to nonsingular terms.
In case of initial-state radiation, Eq. (7) will be multiplied
with the accept probability for the PDF ratios, just as in the
unpolarised case [18].

Explicit helicities are then selected for the daughters
according to the relative probabilities given by the antenna
functions,

P(hA, hB; hi , h j , hk) = A (
hA, hB; hi , h j , hk

)

∑
hi ,h j ,hk A

(
hA, hB; hi , h j , hk

) ,

(8)

where the denominator is equal to the numerator in Eq.
(7). Helicities are assigned to initial-state partons as well,
using the same formalism. With the assumption that positive-
helicity partons appear equally often as negative-helicity
ones in the (anti)proton, the algorithm does not require any
modifications when considering initial-state partons.

Helicity conservation implies that, for gluon emission off
(massless) quarks or final-state gluons, the parent partons do
not change their helicities. A subtlety arises, however, for
emissions off initial-state gluons. In the perspective of for-
wards evolution, such a branching looks like g I

i → g I
Ag

F
j ,

where superscript I (F) denotes an initial-state (final-state)
parton; clearly, the helicity of parton i can be inherited by
either parton j or parton A without violating helicity con-
servation. Hence the reader should not be confused by the
appearance of physical initial-state antenna functions for
which hA �= hi in Appendices A.3 and A.4, with corre-
sponding DGLAP limits given in Appendix A.6.

LO antenna functions such as the ones discussed here
are of course only accurate in the single-unresolved soft
and collinear limits. To estimate the amount of uncertainty
caused by physical shower emissions being away from these
limits, we use a two-pronged approach based on reweight-
ing [16]: (1) variation of the nonsingular terms of the
antenna functions to estimate how close a given branching
is to the logarithmically-dominated region, and (2) varia-
tions of the antenna-function renormalisation scale to esti-
mate the potential impact of subleading-logarithmic terms.
We emphasise that both types of variations are performed so
that they preserve the total cross section (i.e., the variations
appear with equal and opposite signs in real and virtual cor-
rections, respectively [22]). The technical implementation in

Vincia is quite similar to that in Pythia 8; see the respec-
tive HTML User Manuals and Appendix B. The variation of
the renormalisation scale in a helicity-dependent shower is
performed just as for an unpolarised shower,

αs(t) → αs(k t). (9)

Optionally, an NLO-level compensating term can be intro-
duced for gluon emission, which forces the variation to be
equal to the result for k = 1 through order α2

s :

αs(t) → αs(k t)
[
1 + (1 − z) αs (max (mant, k t)) b0 ln(k)

]
,

(10)

where b0 = (33 − 2nF )/6π , nF is the number of active
flavours at the scale t and mant the mass of the parent
antenna. The prefactor z is sik/m2

ant for final-final and
m2

ant/max(sik,m2
ant + s jk) for initial-initial and initial-final

branchings, with the post-branching invariants si j , s jk , and
sik , The variation of the antenna functions by nonsingular
terms,

A
(
si j , s jk,m

2
ant

)
→ A

(
si j , s jk,m

2
ant

)
+ CNS

m2
ant

, (11)

is performed such that the additional nonsingular term
CNS/m2

ant is distributed evenly amongst all helicity con-
figurations for a specific antenna function, i.e. all helicity-
dependent antenna functions obtain the same fraction of the
nonsingular term. Note also that the nonsingular-term vari-
ations are cancelled by ME corrections (up to the corrected
order) and therefore only need to be carried out for uncor-
rected orders.

For any given (bin of a) physical observable, a large depen-
dence onCNS indicates that corrections from hard matrix ele-
ments with higher numbers of legs are needed, while a sig-
nificant dependence on the renormalisation scale indicates a
need for further corrections at the loop level.

Finally, it is worth emphasising that the statistical fluctu-
ations of the uncertainty variations are generally larger than
for the central (non-varied) predictions. This is due to the
central prediction being unweighted (in our setup) and the
variations being computed by reweighting. See [23] for an
example of how weighting (“biasing”) the central distribu-
tion can improve the relative statistical precision of the uncer-
tainty bands.

3 Matrix-element corrections and MHV amplitudes in
VINCIA

3.1 Matrix-element corrections

The GKS formalism for iterated matrix-element correc-
tions [16] was originally based on so-called smoothly ordered
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showers, with a Markovian (history-independent) choice of
restart scale after each branching. This allows the shower
algorithm to generate phase-space points that violate the
nominal ordering condition of the shower, at a suppressed
but still non-zero rate, thus filling previously inaccessible
regions of phase space; the correct (tree-level) emission rates
can then be obtained via matrix-element corrections just as
in the ordered part of phase space. However, general argu-
ments indicate that the effective Sudakov factors for the non-
ordered histories, are probably not correct [18,24,25]. Recent
efforts [19,25] have therefore shifted focus back to filling
the phase space for multiple hard emissions while remain-
ing within the paradigm of strong ordering. In particular, we
take the strongly-ordered iterated-MEC formalism presented
in [19] as our starting point, and adapt it to include explicit
helicities.

The question of Markovian vs non-Markovian behaviour
comes about since the value of the shower evolution param-
eter in conventional strongly-ordered showers depends on
which parton was the last one to be emitted. This cannot be
uniquely determined merely by considering a given parton
configuration; the value is a function of what shower his-
tory (or path) led to the configuration in question; a non-
Markovian aspect. In the context of iterated ME correc-
tions, non-Markovianity implies that the MEC factors con-
tain nested sums over shower histories involving clusterings
all the way back to the Born configuration (while a Markovian
algorithm only requires a single level of clusterings [16]).

Within the formalism presented in [19], the splitting ker-
nels are redefined by multiplying them with the correction
factor

R(�n+1) = |M(�n+1)|2
[ ∑

�′
n

A (�n+1/�′
n) R(�′

n)
∑

�′
n−1

�(t (�′
n/�′

n−1)−t (�n+1/�′
n)) A

(
�′

n/�′
n−1

) R(�′
n−1)

×
k≤1∏

k=n−2

⎛

⎝
∑

�′
k

�(t (�′
k+1/�′

k) −t (�′
k+2/�′

k+1)) A
(
�′

k+1/�′
k

) R(�′
k)

⎞

⎠

×
∑

�′
0

�(t (�′
1/�′

0) − t (�′
2/�′

1)) A
(
�′

1/�′
0

)
�(t (�′

0) − t (�′
1/�′

0))
∣
∣M(�′

0)
∣
∣2

]−1

. (12)

|M(�n+1)|2 denotes the matrix element squared of the �n+1

state andA (
�n+1/�′

n

)
the antenna function, associated with

the clustering �n+1 → �′
n . The denominator sums over all

possible ways the shower could have produced the n + 1-
particle state �n+1 from a given Born state �′

0, including the
correct weights of every shower step on the way. This yields
the recursive structure of Eq. (12) and the dependence on
the correction factors of the previous orders. In addition the

(process-dependent) scale t (�′
0), at which the shower starts

the evolution off the Born state is taken into account.
For a helicity-dependent correction, we modify Eq. (12)

such that, for a given polarised �n state, the sums over the
intermediate states �n−1 · · · �0 are extended to include all
possible helicity configurations. As an example, consider a
possible clustering of a final-state qq̄ pair to a gluon. In the
unpolarised case, one term corresponding to the clustering
qq̄ → g contributes with the respective unpolarised antenna
function and matrix element (which both implicitly involve
helicity sums of course). For a polarised q+q̄− pair, two dif-
ferent clustered helicity states are possible, q+q̄− → g+ and
q+q̄− → g−, each contributing according to their antenna
function and matrix element. The evolution variable, how-
ever, is the same as in the unpolarised case. This concludes
our discussion of helicity-dependent matrix element correc-
tions.

3.2 MHV basics

For fast evaluation of certain types of helicity configurations
Vincia uses maximally helicity violating (MHV) ampli-
tudes. MHV amplitudes have the advantage of being compact
analytical expressions which are independent of Feynman
diagrams; see [26,27] for reviews. In this section, we briefly
introduce the concepts and notation relevant to understanding
the conventions and properties of the small library of MHV
amplitudes implemented in Vincia.

In the following we consider all particles to be outgoing
and massless. We recall that in this limit a particle’s helic-

ity corresponds to its chirality, and define our spinors in the
helicity basis:

v∓(p) = u±(p) = 1

2

(
1 ± γ 5

)
u(p),

v∓(p) = u±(p) = u(p)
1

2

(
1 ∓ γ 5

)
. (13)

The notation 〈i j〉 and [i j] is used for inner products of such
spinors:
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u−(i)u+( j) ≡〈i j〉 =
√
p+
j e

iφi −
√
p+
i e

iφ j , (14)

u+(i)u−( j) ≡[i j] = 〈 j i〉∗, (15)

in terms of the (light-cone) momentum p+
i = p0

i + p3
i and

eiφi = (p1
i + i p2

i )/

√
p+
i . For more details about spinor inner

products and their properties see e.g. [26,27]. Note that in
recent literature one often finds the convention [i j] = 〈i j〉∗,
which is different to above (see e.g. [28]).

In the all-outgoing convention, helicity conservation
implies that at least two pairs of opposite-helicity partons
must exist for an n-parton amplitude to be nonzero.3 If the
remaining n − 4 partons are all chosen to be of the same
helicity (+ or −), the amplitude is called maximally helic-
ity violating (MHV), and has a remarkably simple structure.
The first MHV amplitude to be discovered was the all-gluon
Parke-Taylor amplitude [29]. In the following years this was
extended to include one [30,31] and two [32–34] quark pairs,
as well as to the case of a quark pair and a massive vector
boson which decays leptonically [35,36].

All-gluon amplitudes: To use these amplitudes we first note
that the colour information can be factorised from the kine-
matics. In the n-point all-gluon case we use:

Mn(g1, g2, . . . , gn)

= gn−2
s

∑

σ∈Sn/Zn

Tr(taσ(1) · · · taσ(n) )An(σ (ph1
1 ), · · · , σ (phnn )),

(16)

where gs is the strong coupling (g2
s = 4παs), the nor-

malisation convention is ta = λa
√

2 with λa being the
generators of SU (3), pi is the gluon momentum, hi the
gluon helicity, Tr(taσ(1) · · · taσ(1) ) the colour factor and
An(σ (ph1

1 ), . . . , σ (phnn )) the kinematic part of the ampli-
tude. The sum is over all non-cyclic permutationsσ of the par-
ticles. The Parke–Taylor amplitude then describes the kine-
matic part of Eq. (16) and is given by:

An(i
−, j−) = i

〈i j〉4

〈12〉〈23〉 · · · 〈n1〉 , (17)

where gluons i and j have negative helicity, and all other
particles have positive helicity.

One quark pair: If we add a qq̄ pair we require that the
quark and antiquark have opposite helicities (consistent with
the gluon having spin 1), and use the following colour basis:

Mn(q, g1, g2, . . . gn−2q̄)

= gn−2
s

∑

σ∈Sn−2

(taσ(1) , . . . taσ(n−2) )i j

3 E.g., think of ++ → ++ and cross the two incoming positive helic-
ities to be outgoing negative ones.

×An(q
hqσ(ph1

1 ), . . . , σ (phn−2
n−2 )q̄hq̄ ), (18)

where q, hq , and i (q̄, hq̄ , and j) are respectively the quark
(anti-quark) momentum, helicity, and colour index; and the
sum is over all permutations of the gluons. If the quark and
gluon i each have negative helicity and all other particles
positive helicity, then the kinematic amplitude is the given
by:

An(q
−, i−, q̄+) = 〈qi〉3〈q̄i〉

〈q̄q〉〈q1〉〈12〉 · · · 〈(n − 2)q̄〉 , (19)

where the numbers refer to the (colour-ordered) gluons. If
we exchange the helicities on the quarks, it is sufficient to
exchange the exponents in the numerator:

An(q
+, i−, q̄−) = 〈qi〉〈q̄i〉3

〈q̄q〉〈q1〉〈12〉 · · · 〈(n − 2)q̄〉 . (20)

Twoquark pairs:The four-quark, n−4 gluon colour structure
is given by:

Mn(q, q̄, Q, Q̄, g1, . . . gn−4) = gn−2
s

A0(hq , hQ, hg)

{qq̄}{QQ̄}
×

( ∑

σ∈Sn−4

(taσ(1) · · · taσ(k) )q Q̄(taσ(k+1) · · · taσ(n−4) )Qq̄

× A(0)
n (q, 1, . . . , k, q̄, Q, k + 1, . . . , n − 4, Q̄)

− 1

NC
(taσ(1) · · · taσ(k′) )qq̄(t

aσ(k′+1) · · · taσ(n−4) )QQ̄

× A(1)
n (q, 1, . . . , k′, q̄, Q, k′ + 1, . . . , n − 4, Q̄)

)

, (21)

where {i j} = 〈i j〉 for positive-helicity gluons and {i j} =
[ j i] for negative-helicity gluons; q and Q label the two quark
lines; A0(hq , hQ, hg) is a kinematic function which depends
on the helicities of the two quarks and the gluons,

(hq , hQ, hg) A0(hq , hQ, hg)
(+,+,+) 〈q̄ Q̄〉2

(+,+,−) [qQ]2

(+,−,+) 〈q̄ Q〉2

(+,−,−) [q Q̄]2

, (22)

with opposite-helicity cases obtained using parity transfor-
mation 〈i j〉 ↔ [ j i]; and the two functions A(0)

n and A(1)
n are

kinematic amplitudes, for which we have used the short-hand
notation q ≡ qhq , i ≡ σ(phii ) etc.:

A(0)
n = {q Q̄}

{q1}{12} · · · {k Q̄}
{Qq̄}

{Q(k + 1)}{(k + 1)(k + 2)} · · · {(n − 4)q̄} ,

(23)

A(1)
n = {qq̄}

{q1}{12} · · · {kq̄}
{QQ̄}

{Q(k + 1)}{(k + 1)(k + 2)} · · · {(n − 4)Q̄} .

(24)
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We must sum over all possible partitions of gluons between
the two quark colour lines, and also over all possible permuta-
tions of gluons within those partitions. If there are no gluons
propagating off a particular colour line, then that colour line
is described by a Kronecker delta. Note that this decomposi-
tion only works for the MHV configuration.

Drell-Yan, DIS, and hadronic Z decays: To create MHV
amplitudes with a single quark pair, a single lepton pair, and
an arbitrary number of gluons, the four-quark amplitude can
be recycled with all gluons coming from a single quark line.
The second quark line is now equivalent to a ll̄ pair up to
couplings and an overall propagator factor. The amplitude
then has the form

Mn(hq , hl , hg)

= ign−4
s

∑

σ∈Sn−4

(taσ(1) , . . . taσ(n−4) )i j

×An(q
hq , σ (ph1

1 ), . . . , σ (phn−4
n−4 ), q̄hq̄ , lhl , l̄hl̄ ), (25)

where the sum is again over all gluon permutations. The
kinematic amplitude is given by

An(q, 1, . . . , n − 4, q̄, l, l̄)

=
∑

V=γ,Z ,W±
Ml

V (hl , hq , hg)
1

{q1}{12} · · · {(n − 4)q̄} ,

(26)

where the braces have the same meaning as in Eq. (24), and
the function Ml

V is given by

Ml
V (hl , hq , hg) =

A0(hl , hq , hg)[l̄l](vlhl )V (v
q
hq

)V

〈ll̄〉[l̄l] − M2
V + i�V MV

, (27)

where A0(hl , hq , hg) is given by Eq. (22), (vlhl
)V ((vqhq )V )

is the coupling of lepton l (quark q) with helicity hl (hq )
to vector V , and MV and �V are the mass and width of the
vector boson respectively.

Finally, we remark that in all of the above expressions, flip-
ping the helicity of every particle is equivalent to exchanging
each 〈i j〉 ↔ [ j i]. This concludes our brief recapitulation of
the basics of the MHV formalism and convention choices.

3.3 MHV within Vincia

The MHV amplitudes that are made available in standalone
Vincia are summarised in Table 1. Note that these ampli-
tudes are so far only used for QCD 2 → n matrix-element
corrections, and that the second quark pair must have a dif-
ferent flavour to the first.

Table 1 The types of processes available in Vincia’s MHV library

Type of process Number of particles

All-gluon 4–6

1 quark pair plus gluons 4–7

2 quark pairs plus gluons 4, 5

1 lepton pair, 1 quark pair plus gluons 4–9

The colour-summed squared matrix element is calculated
using the following matrix equation:

FC =
∑

i j

A†
σi
Ci j Aσ j , (28)

where FC stands for the full colour-summed matrix element
squared as in Eq. (3), Ci j is a colour matrix obtained by
multiplying the colour factor from permutation σi onto the
conjugate colour factor from σ j , and the sum is over all colour
orders. We optimise the all-gluon amplitudes by diagonalis-
ing Ci j for the 4 and 5-gluon matrix elements, and partially
diagonalising Ci j for the 6-gluon matrix element as done
in [26].

By default, Vincia uses MHV amplitudes wherever pos-
sible to compute its matrix-element correction factors, thus
ensuring the fastest possible run time. However, this can be
turned off (e.g., for cross checks with amplitudes from Mad-
graph) using the flagvincia:useMHVamplitudes. To
calculate an MHV ME correction, Vincia actively crosses
the initial-state partons into the final state, rearranges the par-
tons into the correct colour order, calculates all of the explicit
spinor products needed, and then calculates the matrix ele-
ment squared.

The calculation of ME corrections for MHV configura-
tions exhibits the nice feature that all clustered states in Eq.
(12) are MHV configurations as well. Helicity conservation
does not allow ++ → − nor −− → + clusterings (in
the all-outgoing convention). This results in clustered states
being either MHV configurations themselves or unphysical
states with a vanishing amplitude. Consider n positive- and 2
negative-helicity outgoing partons as an example. Here clus-
tered states contain either n − 1 positive- and 2 negative-
helicity partons (MHV) or n positive- and 1 negative-helicity
partons (unphysical).

For instructions on how to use Vincia for calculating
spinor products or MHV amplitude in a standalone context,
see the online user guide [37].

3.4 Polarising events with MHV

The fact that Vincia assigns helicities to unpolarised events,
with relative probabilities according to the corresponding
helicity matrix elements squared, was briefly discussed in
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Sect. 2. An interesting simplification occurs when all of
the contributing amplitudes are of the MHV kind, as is,
e.g., the case for all QCD 2 → 2 and 2 → 3 pro-
cesses. The simplification follows by noting that the full-
colour (FC) MHV matrix elements squared all have the
following form (so long as there is at most one quark
pair):

FCh = |Ah
n(1, . . . , n)|2

×
∣
∣
∣
∣
∣

∑

σ

1

〈σ(1)σ (2)〉 · · · 〈σ(n)σ (1)〉CF(σ (1) · · · σ(n))

∣
∣
∣
∣
∣

2

≡ Mh
n

∣
∣
∣
∣
∣

∑

σ

F(σ )

∣
∣
∣
∣
∣

2

, (29)

where h is a label denoting the helicity assignments,
Mh

n ≡ |Ah
n(1, . . . , n)|2 is some function of the helicities and

momenta, σ is the relevant set of permutations, CF is the rel-
evant colour factor at the amplitude level, and

∣
∣∑

σ F(σ )
∣
∣2 is

the square of the sum over colour permutations. For example,
in the all-gluon amplitude Ah

n(1, . . . , n) could be 〈i j〉4. We
have therefore factored out the helicity information Mh

n from
the colour information. This also works for the LC matrix ele-
ments LCh

i which are given by Eq. (29) above without the
sum of permutations. That is, LCh

i = Mh
n |F(σi )|2. Recall

that the conditional probability defined in (6) used to pick
helicities for configurations that already have colour assign-
ments has the form:

P(h|i) = VCh
i

∑
h′ VCh′

i

= FChLCh
i∑

j LCh
j

[
∑

h′

FCh′
LCh′

i
∑

k LCh′
k

]−1

. (30)

We can use Eq. (29) to simplify this:

P(h|i) = Mh
n

∣
∣∑

σ F(σ )
∣
∣2
Mh

n |F(σi )|2
∑

j M
h
n

∣
∣F(σ j )

∣
∣2

×
[
∑

h′

Mh′
n

∣
∣∑

σ ′ F(σ ′)
∣
∣2
Mh′

n |F(σi )|2
∑

k M
h′
n |F(σk)|2

]−1

= Mh
n

∣
∣
∑

σ F(σ )
∣
∣2 |F(σi )|2

∑
j

∣
∣F(σ j )

∣
∣2

×
[∣

∣
∑

σ ′ F(σ ′)
∣
∣2 |F(σi )|2

∑
k |F(σk)|2

∑

h′
Mh′

n

]−1

= Mh
n∑

h′ Mh′
n

. (31)

This shows that our factorisation allows to use the much
simpler expressions Mh

n ≡ |Ah
n(1, . . . , n)|2 to polarise the

process. QCD processes are non-chiral, so we explicitly cal-
culate only half of the factors Mh

n to polarise them, since the
other half are equal by parity. For the mostly-plus helicity
case the factors Ah

n(1, . . . n) are

Process Negative-helicity particles Ah
0(1, . . . , n)

All-gluon i, j 〈i j〉4

Single Quark Pair q, i 〈qi〉3〈q̄i〉
Single Quark Pair q̄, i 〈qi〉〈q̄i〉3

Quark Pair and Lepton Pair − A0(hl , hq ,+)(vlhl
)V (v

q
hq

)V

, (32)

while the mostly plus factors are given by the usual parity
relation.

Note that this also holds for the full-colour amplitudes
used for selecting helicities at the colour-summed level,
cf. Eq. (2),

P(h) = FCh

∑
h′ FCh′ = Mh

n∑
h′ Mh′

n

∣
∣
∑

σ F(σ )
∣
∣2

∣
∣
∑

σ ′ F(σ ′)
∣
∣2 = Mh

n∑
h′ Mh′

n
.

(33)

The preceding argument also works for 4-quark MHV
amplitudes with distinct quark pairs provided one changes
Eq. (29) to include the second colour connection. However,
this doesn’t work for all 4-quark MHV amplitudes because
there is an extra colour-connection when two identical quarks
have the same helicity. Hence the colour factor depends on
the helicity and cannot be factorised.

3.5 Speed comparisons

At the level of a pure shower (before ME corrections are
imposed), the change from helicity-summed to helicity-
sampling radiation functions requires the generation of one
more random number per n → n+1 branching, to select the
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Fig. 1 Speed comparison for helicity-independent (“Non-hel”) and
helicity-dependent (“Hel”) showers as a function of the number of ME-
corrected legs, for qg → qg + gluons with p̂⊥min = 100 GeV, for pp
collisions at Ecm = 10 TeV. The dashed horizontal line indicates the
time it takes to generate MPI and hadronisation for the same events.
Results were obtained from 10,000 events generated for each run, on
a single 2.9 GHz Intel Core i7 processor, using the clang compiler
(v3.9), with -O2 optimisation

helicity of the emitted parton. This comes in addition to at
least three random numbers for the one-particle phase space.
All else being equal, a helicity-sampling shower should there-
fore not be more than a factor 4/3 slower than a helicity-
summed one. (Similar arguments hold for the initial polar-
isation step for the hard process). However, since there are
many common components which must be computed regard-
less of the choice of helicity treatment, one expects the effec-
tive slowdown of the full shower algorithm to be milder than
this upper limit. This is also borne out by explicit tests with
Vincia, which exhibit slowdowns of less than 10% when
switching on helicity-sampling. (See also the first bin of Fig. 1
below.)

As a measure of the relative speed of helicity-dependent vs
helicity-summed ME corrections, and the difference between
using MHV matrix elements or Madgraph 4 ones, we con-
sider the following specific (but fairly representative) bench-
mark case: qg → qg Born-level processes, with a minimum
p̂⊥ of 100 GeV, in pp collisions with Ecm = 10 TeV. A tech-
nical point is that, for this comparison, we switch g → qq̄
branchings off in the shower, so that the generated shower
configurations are all of the simple qg → qg + gluons type.
This allows us to illustrate speeds of ME corrections with up
to three additional legs while, if g → qq̄ branchings had been
switched on, the current version of Vincia is restricted to ME
corrections with up to two additional legs. (This restriction
will be lifted in a future update.)

Figure 1 illustrates the number of milliseconds it takes
to generate one shower, as a function of the number of legs
that are requested to be ME-corrected. The solid (red) line
without symbols uses helicity-summed showers and matrix

elements, while the two blue curves (with symbols) show
the dependence of the helicity-dependent formalism, with
or without enabling the library of MHV matrix elements,
respectively. For reference, the thick dashed horizontal line
shows the time it takes to generate multi-parton interactions
(MPI) and hadronisation for the same events.4 For 0 or 1
corrected emissions, the helicity-summed shower is actually
slightly faster, since the Born-level polariser and the helicity
selection in the shower take a little extra time and the first-
order ME corrections are very quick to evaluate even when
summing over helicities. At two legs, however, the helicity-
dependent formalism is up to 30% quicker (with the MHV
library switched on) than the helicity-summed one. At three
legs, the difference is a factor 4, with the MHV library allow-
ing to shave an extra ∼ 15% off the shower-generation time
relative to using only MG4 matrix elements.

One also notices that by two corrected legs, the showering
time is becoming comparable to the time it takes to gener-
ate MPI and hadronisation for the events, hence this is the
point at which the showering speed would start to be felt in
the context of generating full events. By three corrected legs,
the ME corrections dominate the event-generation time. The
default in the current version of Vincia is that ME corrections
are enabled for QCD 2 → 2 processes up to two additional
legs; the event-generation time should therefore stay within
roughly a factor 2 of that of the uncorrected algorithm. The
complete set of matrix elements required for 3rd-order cor-
rections will be provided in a future update. For hadronic Z ,
W , and H production or decay, the full set of 3rd-order matrix
elements are already available in the current version. (We
note that the implementation of the iterated-MEC algorithm
itself is general and could in principle handle any number of
legs, if provided with the required matrix elements.)

4 Example application

To illustrate the properties of the ME-corrected algorithm
(and uncertainty variations) in the context of a realistic
application, we consider showers off gg → gg Born-level
events and compare Pythia 8.226 and Vincia 2.200 on three
observables sensitive to different aspects of the evolution:
early branchings, late branchings, and a polarisation effect,
respectively:

1. Early branchings the 3-jet resolution scale, d23, using
the longitudinally invariant k⊥-jet algorithm [38] with
R = 0.4. The implementation of the algorithm is adapted
from the code used in [39], originally written by S. Höche.

4 The thickness of the dashed line reflects that the helicity-dependent
showers result in slightly longer MPI generation times due to the slightly
slower showering off the MPI systems.
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Fig. 2 Logarithmic distributions of ratios of differential jet resolutions,
d23/d12 and d56/d12, for showering gg → gg events. Predictions of
Pythia 8.226 and Vincia 2.200 with and without ME corrections are

shown. The solid bands present a renormalisation-scale variation with
k = 1/2 and 2 and the hashed bands a variation of the nonsingular terms
with CNS = ±2

2. Late branchings the 6-jet k⊥ resolution scale, d56, with
the same jet algorithm as above.

3. Gluon polarisation the angle between the event plane
(characteristic of the original gg → gg Born-level event)
and the plane of a subsequent g → bb̄ splitting. Here,
the FastJet [40] implementation of the anti-k⊥ jet algo-
rithm [41] is used, with R = 0.2 (so that the b jets can
be resolved down to small separations), and we impose
a minimum jet p⊥ of 50 GeV. (For further ideas on how
to exploit heavy-flavour tags to probe g → qq̄ splittings
at colliders, see e.g. [42,43].)

The basic 2 → 2 QCD process is sampled with the cut p̂⊥ ≥
500 GeV on the final-state partons. For consistency with the
shower αs parameters, Vincia’s default tune uses two-loop
running for the strong coupling with αs(m2

Z ) = 0.118 for the
hard process. To compare predictions on an equal footing we
apply the same settings for the underlying Born process in
Pythia. To focus on the showering off the hard process all
comparisons are done with multiparton interactions switched
off.

To obtain dimensionless variables, the jet resolution mea-
sures d23 and d56 are normalised by a factor 1/d12, i.e.,
they are effectively measured relative to a scale represent-
ing the p̂2⊥ scale of the underlying Born process.5 The
resulting quantities exhibit a fixed-order behaviour for large
values and a Sudakov suppression for low values. Espe-
cially for well-resolved radiation, we therefore expect these
observables to be sensitive to low-order ME corrections, and
hence the uncertainty associated with nonsingular-term vari-
ations should be reduced when Vincia’s ME corrections are
switched on. (Note: Pythia does not incorporate ME cor-
rections for QCD 2 → 2 processes.) Parton-level results
for showered gg → gg events are presented in Fig. 2 with
uncertainty bands.

The ME corrections in strongly-ordered events exhibit a
modest effect of up to 20% for large values of d23/d12 and
d56/d12, with the ME-corrected rate being larger than that of
the pure Vincia shower. Shape differences between the pre-

5 This is similar to how, e.g., m2
Z is used to normalise corresponding

observables in e+e− collisions at the Z pole.
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dictions of Pythia and Vincia are visible throughout most
of the distributions, with the uncorrected Vincia shower gen-
erating a somewhat harder d23/d12 spectrum than Pythia.
ME corrections increase the rate for large d56/d12 values,
bringing the predictions of Vincia closer to that of Pythia.
Given the different choices of shower αs parameters, evo-
lution variable, and radiation functions, we do not consider
this level of disagreement between the two models surprising.
The evolution of the hard process starts at the factorisation
scale for both showers. However, depending on the form of
evolution variable, the hardest possible scales correspond to
different values of d23.

All predictions exhibit some rather large fluctuations in
the uncertainty bands. The dijet system with the cut p̂⊥ ≥
500 GeV as underlying hard process is typically accompa-
nied by a large number of additional jets. Given the nature of
the reweighting algorithm of [22] (and similarly for [23,44])
this may easily result in fluctuating weights. In addition we
expect larger fluctuations in the nonsingular-term variations
for the helicity shower, compared to the helicity-independent
one. As discussed in Sect. 2, the additional nonsingular
terms are distributed evenly between all helicity configu-
rations. This results in a larger spread of weights, when
considering helicity configurations that constitute either a
large or a small fraction of the helicity-summed antenna
functions. To mitigate the effects of weight fluctuations,
we conclude that further development of these reweight-
ing methods would be useful, in particular for large phase
spaces (long shower chains). E.g., the authors in [23] have
demonstrated that combining biasing with reweighting can
improve the relative statistical precision of the uncertainty
variations, at the price of generating some reasonably well-
behaved weights for the central (non-varied) event sam-
ple.

The variation of the nonsingular terms (hashed bands)
results in a larger band around small |d23/d12| and |d56/d12|
for Vincia without ME corrections, compared to Pythia.
The ME corrections cancel the effect of varying the non-
singular terms in the radiation functions. Consequently, the
respective uncertainty band for Vincia with ME corrections
is very narrow, especially for d23. The renormalisation-scale
variations (shaded bands) are quite similar in size for all pre-
dictions. They show the largest effect for small jet separation
scales, where soft emissions and the Sudakov factor con-
tribute to the distribution.

We now turn to an observable where polarisation effects
are expected to contribute. In events with two b-jets a plane
is defined by the two jets. A second plane is defined by the
gluon-jet (the sum of the two b-jets) and the beam axis. In
Fig. 3 the angle between the two planes is shown. A flat
distribution is obtained with Pythia without gluon polar-
isation effects in the final-state shower and Vincia with-
out ME corrections. However, Vincia produces an around

Fig. 3 The angle between the plane of the two b-jets and
the plane of the gluon jet and the beam axis. Predictions
of Pythia 8.2.26 and Vincia 2.2.0 with and without ME
corrections are shown. In the labelling, “pol off” refers to
the Pythia 8 parameters TimeShower:phiPolAsym and
TimeShower:phiPolAsymHard being switched off and “pol
on” to the default settings, where both parameters are switched on

15% higher total rate, compared to Pythia. We note that
both codes generate a similar total rate of g → bb̄ split-
tings in the shower, where the gluon splittings occur “later”
in the evolution in Pythia (i.e., preceded by a larger num-
ber of other branchings). The b-quarks are therefore more
likely to obtain a smaller invariant mass and might be clus-
tered within the same jet. Together with the p⊥ and invari-
ant mass cuts on the jets, this may cause a smaller rate of
events with two b-jets. The polarisation effects in Pythia
leave the total rate unchanged, but increase the amount of
events where the angle is close to π/2. The ME correc-
tions in Vincia change the total rate by decreasing the num-
ber of events with splitting angles near 90◦. The qualita-
tive effect is therefore the opposite of that in Pythia, where
the total shower rate is preserved, but the region around
90◦ is enhanced by the polarisation effect. We conclude
that a measurement of this observable, and the develop-
ment of alternative strategies for corrections beyond fixed
order (e.g., along the lines proposed in [25]), would be desir-
able.

5 Conclusions

We have presented a helicity-dependent antenna shower for
QCD initial- and final-state radiation, implemented in the
Vincia shower model. The iterated ME correction formal-
ism of [7,16,18,19] has been extended to cope with helicity-
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dependent clusterings and splitting kernels involving initial-
state legs, and in this work has been applied to strongly
ordered showers in a direct extension of the formalism pre-
sented in [19]. We further reported on new, user-specifiable
uncertainty variations in Vincia, including renormalisation-
scale and splitting-kernel variations.

The new approach and a library for tree-level MHV ampli-
tudes enable a faster evaluation of MEC factors, as illustrated
explicitly for the process qg → qg+gluons. While the pure
shower is slightly slower due to the additional step of helicity
selection, the evaluation of ME corrections can be done sig-
nificantly faster when only a single or a few helicity matrix
elements need to be evaluated per trial branching, relative to
when helicity-summed matrix elements are used.

To illustrate the effect of the iterated ME corrections and
uncertainty variations within the helicity-dependent shower,
we considered a few representative observables, based on
showered gg → gg Born-level events. As expected, ME
corrections reduce the overall amount of variation consider-
ably in regions of relatively hard emissions, where process-
dependent nonsingular terms (captured by the matrix ele-
ments) dominate over the universal logarithmic terms (cap-
tured by the showers). In regions of large scale hierarchies,
the uncertainty due to renormalisation-scale variations dom-
inates and remains uncompensated by tree-level ME correc-
tions.

We also showed a more complex example, the angle
between a Born-level gg → gg event plane and the plane of
a subsequent g → bb̄ splitting. In Pythia, a general imple-
mentation of gluon polarisation effects implies an enhance-
ment of such splittings at 90 degrees to the original event
plane (while the total shower rate of g → bb̄ splittings is pre-
served); while in Vincia, ME corrections dominantly act to
suppress the overall rate of g → bb̄ splittings. Moreover, the
suppression is most active for the most well-resolved branch-
ings (at 90 degrees), leading to an opposite-sign effect than
the one in Pythia. We conclude that there is a complex inter-
play between the rate and the angular dependence of these
branchings, and intend to investigate this further in future
studies.
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Appendix A: Helicity-dependent antenna functions

A.1: Notation and conventions

We use capital letters to denote partons in the pre-branching
n-parton configuration and lower-case letters to denote par-
tons in the post-branching (n + 1)−parton configuration.
Incoming partons are denoted a, b, while final-state partons
are denoted i , j , k. Thus, for example, an initial-final antenna
branching is written AK → ajk.

The scaled branching invariants for final-final antenna
functions are

yi j = si j
m2

I K

, y jk = s jk
m2

I K

, and yik = sik
m2

I K

, (34)

and the energy fractions

x j = 1 − 1

1 − μ2
I

yik and xk = 1 − 1

1 − μ2
I

yi j , (35)

with μI = mi/mIK . The scaled branching invariants for
initial-final antenna functions are

yaj = saj
m2

AK + s jk
, y jk = s jk

m2
AK + s jk

, and

yak = sak
m2

AK + s jk
, (36)

and for initial-initial antenna functions

yaj = saj
m2

AB + saj + s jb
, y jb = s jb

m2
AB + saj + s jb

, and

yAB = m2
AB

m2
AB + saj + s jb

. (37)

Note that, for gluon-emission antennae involving massive
parent quarks, a helicity-independent negative correction to
the eikonal is added, with helicity-summed average:

�aeik
mass = −2m2

I

s2
i j

− 2m2
K

s2
jk

. (38)

For gluon-splitting antennae (Xg → Xq̄ jqk), the mass
correction is positive:

�asplit
mass = m2

j

m4
jk

. (39)
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A.2: QQ̄ parents: gluon emission

The helicity averages for qq̄ → qgq̄ antennae are

FF : a(qI qK → qi g jqk)

= 1

m2
I K

[
2yik
yi j y jk

+ y jk
yi j

+ yi j
y jk

+ 1

]

= 1

m2
I K

[
(1 − yi j )2 + (1 − y jk)2

yi j y jk
+ 1

]

, (40)

II : a(q̄AqB → q̄ag jqb)

= 1

sAB

[
2yAB
yaj y jb

+ y jb
yaj

+ yaj
y jb

+ 1

]

= 1

sAB

[
(1 − yaj )2 + (1 − y jb)2

yaj y jb
+ 1

]

, (41)

IF : a(qAqK → qag jqk)

= 1

sAK

[
(1 − yaj )2 + (1 − y jk)2

yaj y jk
+ 3

2
− y2

aj

2
− y2

jk

2

]

,

(42)

where the slightly different nonsingular terms chosen for the
IF case ensure positivity of in particular the (++ → + −
+) antenna function over all of the IF phase space, while
the nonsingular terms for the FF and II cases result from
averaging over the corresponding helicity matrix elements
for Z and H decays.

The individual helicity contributions are:

FF : a(++ → + + +) = 1

m2
I K

[
1

yi j y jk

]

, (43)

a(++ → + − +)

= 1

m2
I K

[
(1 − yi j )2 + (1 − y jk)2 − 1

yi j y jk
+ 2

]

, (44)

a(+− → + + −) = 1

m2
I K

[
(1 − yi j )2

yi j y jk

]

, (45)

a(+− → + − −) = 1

m2
I K

[
(1 − y jk)2

yi j y jk

]

. (46)

II : a(++ → + + +) = 1

sAB

[
1

yaj y jb

]

, (47)

a(++ → + − +) = 1

sAB

[
y2
AB

yaj y jb

]

, (48)

a(+− → + + −) = 1

sAB

[
(1 − yaj )2

yaj y jb

]

, (49)

a(+− → + − −) = 1

sAB

[
(1 − y jb)2

yaj y jb

]

. (50)

IF : a(++ → + + +) = 1

sAK

[
1

yaj y jk

]

, (51)

a(++ → + − +)

= 1

sAK

[
(1 − yaj )2 + (1 − y jk)2 − 1

yaj y jk

+ 3 − y2
aj − y2

jk

]

, (52)

a(+− → + + −) = 1

sAK

[
(1 − yaj )2

yaj y jk

]

, (53)

a(+− → + − −) = 1

sAK

[
(1 − y jk)2

yaj y jk

]

. (54)

A.3: QG parents: gluon emission

The helicity averages for qg → qgg antennae are

FF : a(qI gK → qi g j gk)

= 1

m2
I K

[
2yik
yi j y jk

+ y jk
yi j

+ yi j (1 − yi j )

y jk
+ yi j + y jk

2

]

= 1

m2
I K

[
(1 − yi j )3 + (1 − y jk)2

yi j y jk

− 2μ2
I

y2
i j

+ yik − yi j
y jk

+ 1 + yi j + y jk
2

]

, (55)

II : a(qAgB → qag j gb)

= 1

sAB

[
(1 − yaj )3 + (1 − y jb)2

yaj y jb
+ 1 + y3

aj

y jb(1 − yaj )

+ 2 − yaj − y jb
2

]

, (56)

IF : a(qAgK → qag j gk)

= 1

sAK

[
(1 − yaj )3 + (1 − y jk)2

yaj y jk
+ 1 − 2yaj

y jk

+ 3

2
+ yaj − y jk

2
− y2

aj

2

]

, (57)

IF : a(gAqK → gag jqk)

= 1

sAK

[
(1 − y jk)3 + (1 − yaj )2

yaj y jk
+ 1 + y3

jk

yaj (yAK + yaj )

+3

2
− y2

jk

2

]

. (58)

Note that for the initial-final case two antennae, qg → qgg
and gq → ggq, exist.

The individual helicity contributions are:

FF : a(++ → + + +) = 1

m2
I K

[
1

yi j y jk
+ (1 − α)(1 − y jk)

×
(

1 − 2yi j − y jk
y jk

)]

, (59)
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a(++ → + − +) = 1

m2
I K

[
(1 − yi j )y2

ik

yi j y jk

]

, (60)

a(+− → + + −) = 1

m2
I K

[
(1 − yi j )3

yi j y jk

]

, (61)

a(+− → + − −) = 1

m2
I K

[
(1 − y jk)2

yi j y jk

+(1 − α)(1 − y jk)

(
1 − 2yi j − y jk

y jk

)]

. (62)

II : a(++ → + + +) = 1

sAB

[
1

yaj y jb

1 − y jb
1 − yaj − y jb

]

= 1

sAB

[
1

yaj y jb
+ 1

y jb yAB

]

(63)

sing→ 1

sAB

[
1

yaj y jb
+ 1

y jb(1 − yaj )

]

, (64)

a(++ → + − +) = 1

sAB

1

yaj y jb

y3
AB

1 − y jb

y3
AB

sAB

[
1

yaj y jb

+ 1

yaj (1 − y jb)

]

(65)

sing→ 1

sAB

[
y3
AB

yaj y jb
+ y2

AB

yaj

]

= 1

sAB

(1 − yaj )y2
AB

yaj y jb
, (66)

a(+− → + + −)

= 1

sAB

[
(1 − yaj )3

yaj y jb
+ 1 − y jb − y2

aj

1 − y jb

]

(67)

sing→ 1

sAB

(1 − yaj )3

yaj y jb
, (68)

a(+− → + − −)

= 1

sAB

1

yaj y jb

(1 − y jb)3

1 − yaj − y jb

= (1 − y jb)2

sAB

[
1

yaj y jb
+ 1

y jb

1

1 − yaj − y jb

]

(69)

sing→ 1

sAB

[
(1 − y jb)2

yaj y jb
+ 1

y jb(1 − yaj )

]

, (70)

a(++ → + − −) = 1

sAB

y3
aj

y jb(1 − y jb)

1

1 − yaj − y jb
,

(71)

sing→ 1

sAB

y3
aj

y jb(1 − yaj )
, (72)

a(+− → + + +) = a(++ → + − −). (73)

IF : a(++ → + + +)

= 1

sAK

[
1

yaj y jk
+ 1 − 2yaj

y jk

]

, (74)

a(++ → + − +)

= 1

sAK

[
(1 − yaj )3 + (1 − y jk)2 − 1

yaj y jk
+ 3 − y2

aj

]

, (75)

a(+− → + + −)

= 1

sAK

[
(1 − yaj )3

yaj y jk

]

, (76)

a(+− → + − −)

= 1

sAK

[
(1 − y jk)2

yaj y jk
+ 1 − 2yaj

y jk
+ 2yaj − y jk

]

. (77)

IF : a(++ → + + +)

= 1

sAK

[
1

yaj y jk
+ 1

yaj (yAK + yaj )

]

, (78)

a(++ → + − +)

= 1

sAK

[
(1 − yaj )2 + (1 − y jk)3 − 1

yaj y jk
+ 3 − y2

jk

]

, (79)

a(+− → + + −)

= 1

sAK

[
(1 − yaj )2

yaj y jk
+ 1

yaj (yAK + yaj )

]

, (80)

a(+− → + − −) = 1

sAK

[
(1 − y jk)3

yaj y jk

]

, (81)

a(++ → − − +) = 1

sAK

y3
jk

yaj (yAK + yaj )
, (82)

a(+− → − − −) = a(++ → − − +). (83)

Note that for gluons in the initial-state an additional helic-
ity configuration6 arises where the final-state gluon inherits
the helicity.

A.4: GG parents: gluon emission

The helicity averages for gg → ggg antennae are

FF : a(gI gK → gi g j gk)

= 1

m2
I K

[
2yik
yi j y jk

+ y jk(1 − y jk)

yi j
+ yi j (1 − yi j )

y jk

+1

2
yi j + 1

2
y jk

]

= 1

m2
I K

[
(1 − yi j )3 + (1 − y jk)3

yi j y jk

+ yik − yi j
y jk

+ yik − y jk
yi j

+ 2 + 1

2
yi j + 1

2
y jk

]

, (84)

II : a(gAgB → gag j gb)

6 Additional with respect to the final-state antenna functions.
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= 1

sAB

[
(1 − yaj )3 + (1 − y jb)3

yaj y jb
+ 1 + y3

aj

y jb(1 − yaj )

+ 1 + y3
jb

yaj (1 − y jb)
+ 3 − 3yaj

2
− 3y jb

2

]

, (85)

IF : a(gAgK → gag jqk)

= 1

sAK

[
(1 − yaj )3 + (1 − y jk)3

yaj y jk

+ 1 + y3
jk

yaj (yAK + yaj )
+ 1 − 2yaj

y jk
+ 3 − 2y jk

]

. (86)

The individual helicity contributions are:

FF : a(++ → + + +)

= 1

m2
I K

[
1

yi j y jk
+ (1 − α)

×
(

(1 − yi j )
1 − 2y jk − yi j

yi j

+(1 − y jk)
1 − 2yi j − y jk

y jk

)]

, (87)

a(++ → + − +) = 1

m2
I K

[
y3
ik

yi j y jk

]

, (88)

a(+− → + + −)

= 1

m2
I K

[
(1 − yi j )3

yi j y jk

+(1 − α)(1 − yi j )
1 − 2y jk

yi j

]

, (89)

a(+− → + − −)

= 1

m2
I K

[
(1 − y jk)3

yi j y jk

+(1 − α)(1 − y jk)
1 − 2yi j

y jk

]

. (90)

II : a(++ → + + +)

= 1

sAB

[
1

yaj y jb
+ 1

y jb(1 − yaj )
+ 1

yaj (1 − y jb)

]

,

(91)

a(++ → + − +) = 1

sAB

y3
AB

yaj y jb
, (92)

a(+− → + + −)

= 1

sAB

[
(1 − yaj )3

yaj y jb
+ 1

yaj (1 − y jb)

]

, (93)

a(+− → + − −)

= 1

sAB

[
(1 − y jb)3

yaj y jb
+ 1

y jb(1 − yaj )

]

, (94)

a(++ → + − −)

= 1

sAB

y3
aj

y jb(1 − yaj )
, (95)

a(++ → − − +) = 1

sAB

y3
jb

yaj (1 − y jb)
, (96)

a(+− → + + +) = a(++ → + − −), (97)

a(+− → − − −) = a(++ → − − +). (98)

IF : a(++ → + + +)

= 1

sAK

[
1

yaj y jk
+ 1 − 2yaj

y jk
+ 1

yaj (yAK + yaj )

]

, (99)

a(++ → + − +)

= 1

sAK

[
(1 − yaj )3 + (1 − y jk)3 − 1

yaj y jk

+ 6 − 3yaj − 3y jk + yaj y jk

]

, (100)

a(+− → + + −)

= 1

sAK

[
(1 − yaj )3

yaj y jk
+ 1

yaj (yAK + yaj )

]

, (101)

a(+− → + − −)

= 1

sAK

[
(1 − y jk)3

yaj y jk
+ 1 − 2yaj

y jk

+3yaj − y jk − yaj y jk
]
, (102)

a(++ → − − +) = 1

sAK

y3
jk

yaj (yAK + yaj )
, (103)

a(+− → − − −) = a(++ → − − +). (104)

Note that for gluons in the initial-state an additional helic-
ity configuration7 arises where the final-state gluon inherits
the helicity.

A.5: G → Q̄Q splittings

The helicity averages for Xg → Xq̄q antennae (final-state
gluon splitting) are

FF : a(XI gK → Xi q̄ j qk)

= 1

2m2
jk

[
(1 − x j )

2 + (1 − xk)
2
]

= 1

2m2
jk

[
y2
ik + y2

i j

(1 − μ2
I )

2

]

,

(105)

IF : a(XAgK → Xaq̄ j qk) = 1

2m2
jk

[
y2
ak + y2

aj

]
. (106)

The individual helicity contributions are:

FF : a(X+ → X − +)

7 Additional with respect to the final-state antenna functions.
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= 1

2m2
jk

y2
ik

(1 − μ2
I )

2
= (1 − x j )2

2m2
jk

, (107)

a(X+ → X + −)

= 1

2m2
jk

y2
i j

(1 − μ2
I )

2
= (1 − xk)2

2m2
jk

. (108)

IF : a(X+ → X − +) = y2
ak

2m2
jk

, (109)

a(X+ → X + −) = y2
aj

2m2
jk

. (110)

The helicity averages for qX → gq̄ X antennae (quark
backwards evolving to a gluon) are

II : a(qAXB → gaq̄ j Xb)

= 1

sAB

y2
AB + (1 − yAB)2

yaj
, (111)

IF : a(qAXK → gaq̄ j Xk)

= 1

sAK

y2
AK + (1 − yAK )2

yaj
. (112)

The individual helicity contributions are:

II : a(+X → + − X) = 1

sAB

y2
AB

yaj
, (113)

a(+X → − − X) = 1

sAB

(1 − yAB)2

yaj
, (114)

a(−X → − + X) = 1

sAB

y2
AB

yaj
, (115)

a(−X → + + X) = 1

sAB

(1 − yAB)2

yaj
. (116)

IF : a(+X → + − X) = 1

sAK

y2
AK

yaj
, (117)

a(+X → − − X) = 1

sAK

(1 − yAK )2

yaj
, (118)

a(−X → − + X) = 1

sAK

y2
AK

yaj
, (119)

a(−X → + + X) = 1

sAK

(1 − yAK )2

yaj
. (120)

The helicity averages for gX → qqX antennae (gluon
backwards evolving to a quark) are

II : a(gAXB → qaq j Xb) = 1

sAB

1 + (1 − yAB)2

2yaj (1 − y jb)
, (121)

IF : a(gAXK → qaq j Xk) = 1

sAK

1 + (1 − yAK )2

2yaj (yAK + yaj )
.

(122)

The individual helicity contributions are:

II : a(+X → + + X) = 1

sAB

1

2yaj (1 − y jb)
, (123)

a(+X → − − X) = 1

sAB

(1 − yAB)2

2yaj (1 − y jb)
, (124)

a(−X → − − X) = 1

sAB

1

2yaj (1 − y jb)
, (125)

a(−X → + + X) = 1

sAB

(1 − yAB)2

2yaj (1 − y jb)
. (126)

IF : a(+X → + + X) = 1

sAK

1

2yaj (yAK + yaj )
, (127)

a(+X → − − X) = 1

sAK

(1 − yAK )2

2yaj (yAK + yaj )
, (128)

a(−X → − − X) = 1

sAK

1

2yaj (yAK + yaj )
, (129)

a(−X → + + X) = 1

sAK

(1 − yAK )2

2yaj (yAK + yaj )
. (130)

A.6: Gluon emission of initial-state gluons

As discussed in Appendices 1 and 1, helicity configurations
exist for which a final-state gluon inherits the helicity of
an initial-state gluon. Thus, the helicity of a pre-branching
initial-state gluon, A or B, can be different from that of
the corresponding post-branching initial-state gluon, a or b,
without violating helicity conservation.

For completeness, we give the DGLAP limits of antenna
functions for gluon emission off initial-state gluons. The lim-
its are independent of the other parent in the parent antenna.
For initial-initial antennae the DGLAP limit corresponds to

y jb = Q2

sab
→ 0, z = yAB = sAB

sab
, and yaj → 1 − z.

(131)

This gives the following limits of the helicity-dependent
antenna functions in Eqs. (91) to (98) [or Eqs. (63) to (73)]
for a parent with + helicity,

a(X+ → X + +) → 1

Q2

1

z

1

z(1 − z)

= 1

Q2 P IS
g→gg(+ → ++),

a(X+ → X − +) → 1

Q2

1

z

z3

1 − z
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= 1

Q2 P IS
g→gg(+ → −+),

a(X+ → X − −) → 1

Q2

1

z

(1 − z)3

z

= 1

Q2 P IS
g→gg(+ → +−).

The same limits are obtained for initial-final antennae with

yaj = Q2

m2
AK + s jk

→ 0, z = yAK

= m2
AK

m2
AK + s jk

, y jk → 1 − z, and yak → 1. (132)

Appendix B: Details of VINCIA implementation

The results obtained in this paper were obtained with version
2.2 of the Vincia code, which has been made publicly avail-
able. For documentation, see the HTML manual and update
notes section of the README accompanying the code. For
ease of reference, we emphasise the following changes rela-
tive to version 2.0 described in [18].

• The so-called “Ariadne factor” [45] for gluon-splitting
antennae has been removed completely, as it has only
been applied to 4-jet events in hadronic Z decays and its
influence cancels once ME corrections are used in the
evolution.

• The CMW-rescaling of αs [46] is no longer applied to the
soft-eikonal terms of the antenna functions, but rather as
a global rescaling of QCD, independent of the type of
branching.

• By default the power shower approach [10,47] is used for
hard process without QCD partons in the final state. This
obviates the need for a separate event sample containing
jets associated with scales larger than the factorisation
scale, which has been introduced in [18]. For QCD-type
processes the shower starts the evolution at the factorisa-
tion scale.

• The so-called “smooth ordering” [16], which allows the
shower to populate phase-space regions beyond the reach
of traditional ordered showers, is no longer used. Con-
sequently, the MECs formalism so far used in Vincia is
no longer applicable and the MECs method for ordered
showers of [19] is applied. See Sect. 3 for a brief review
of the formalism.

• The CKKW-L merging implementation in Pythia 8 [48]
is now also available inVincia, making use of the param-
eters in Pythia 8. This allows to supplement the MECs
method for ordered showers with non-shower-like events,
as discussed in [19]. Note however, that it is not possi-

ble to combine the merging procedure with the helicity-
dependent shower.

• Automated uncertainty variations are now user specifi-
able in the same manner as in Pythia 8 [22], with the
following keywords controlling the type and size of vari-
ations in Vincia, for final-final (FF), initial-final (IF),
and initial-initial (II) antennae respectively:

• Renormalisation-scale variations (applied to all
antenna functions):

ff:muRfac ; if:muRfac ; ii:muRfac.

• Nonsingular-term variations (applied to all antenna
functions):

ff:cNS ; if:cNS ; ii:cNS.

• Optionally, antenna-specific variations can be spec-
ified, which then supersede the antenna-independent
variations. The full set of possible keywords is listed
in Vincia’s HTML User Reference.
• As an example, the following value (default inVin-
cia 2.200) for the Vincia:UncertaintyBands
List string vector defines a set of four alterna-
tive weight sets, with labels “alphaShi”, “alphaSlo”,
“hardHi”, and “hardLo”, respectively:
Vincia:UncertaintyBandsList = {
alphaShi ff:muRfac=0.5 if:muRfac=0.5
ii:muRfac=0.5,

alphaSlo ff:muRfac=2.0 if:muRfac=2.0
ii:muRfac=2.0,

hardHi ff:cNS=2.0 if:cNS=2.0
ii:cNS=2.0,

hardLo ff:cNS=-2.0 if:cNS=-2.0
ii:cNS=-2.0 }
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