896 research outputs found

    Fluvio-Marine Sediment Partitioning as a Function of Basin Water Depth

    Get PDF
    Progradational fluvio-deltaic systems tend towards but cannot reach equilibrium, a state in which the longitudinal profile does not change shape and all sediment is bypassed beyond the shoreline. They cannot reach equilibrium because progradation of the shoreline requires aggradation along the longitudinal profile. Therefore progradation provides a negative feedback, unless relative sea level falls at a sufficient rate to cause non-aggradational extension of the longitudinal profile. How closely fluvio-deltaic systems approach equilibrium is dependent on their progradation rate, which is controlled by water depth and downstream allogenic controls, and governs sediment partitioning between the fluvial, deltaic, and marine domains. Here, six analogue models of coastal fluvio-deltaic systems and small prograding shelf margins are examined to better understand the effect of water depth, subsidence, and relative sea-level variations upon longitudinal patterns of sediment partitioning and grain-size distribution that eventually determine large-scale stratigraphic architecture. Fluvio-deltaic systems prograding in relatively deep-water environments are characterized by relatively low progradation rates compared to shallow-water systems. This allows these deeper water systems to approach equilibrium more closely, enabling them to construct less concave and steeper longitudinal profiles that provide low accommodation to fluvial systems. Glacio-eustatic sea-level variations and subsidence modulate the effects of water depth on the longitudinal profile. Systems are closest to equilibrium during falling relative sea level and early lowstand, resulting in efficient sediment transport towards the shoreline at those times. Additionally, the strength of the response to relative sea-level fall differs dependent on water depth. In systems prograding into deep water, relative sea-level fall causes higher sediment bypass rates and generates significantly stronger erosion than in shallow-water systems, which increases the probability of incised-valley formation. Water depth in the receiving basin thus forms a first-order control on the sediment partitioning along the longitudinal profile of fluvio-deltaic systems and the shelf clinoform style. It also forms a control on the availability of sand-grade sediment at the shoreline that can potentially be remobilized and redistributed into deeper marine environments. Key findings are subsequently applied to literature of selected shelf clinoform successions

    Physiologically based modelling of tranexamic acid pharmacokinetics following intravenous, intramuscular, sub-cutaneous and oral administration in healthy volunteers

    Get PDF
    BACKGROUND: Tranexamic acid (TXA) is an antifibrinolytic drug that reduces surgical blood loss and death due to bleeding after trauma and post-partum haemorrhage. Treatment success is dependent on early intervention and rapid systemic exposure to TXA. The requirement for intravenous (IV) administration can in some situations limit accessibility to TXA therapy. Here we employ physiologically based pharmacokinetic modelling (PBPK) to evaluate if adequate TXA exposure maybe achieved when given via different routes of administration. METHODS: A commercially available PBPK software (GastroPlus®) was used to model published TXA pharmacokinetics. IV, oral and intramuscular (IM) models were developed using healthy volunteer PK data from twelve different single dose regimens (n=48 participants). The model was verified using separate IV and oral validation datasets (n=26 participants). Oral, IM and sub-cutaneous (SQ) dose finding simulations were performed. RESULTS: Across the different TXA regimens evaluated TXA plasma concentrations varied from 0.1 to 94.0 µg/mL. Estimates of the total plasma clearance of TXA ranged from 0.091 to 0.104 L/h/kg, oral bioavailability from 36 to 67 % and Tmax from 2.6 to 3.2 and 0.4 to 1.0 hours following oral and intramuscular administration respectively. Variability in the observed TXA PK could be captured through predictable demographic effects on clearance, combined with intestinal permeability and stomach transit time following oral administration and muscle blood flow and muscle/plasma partition coefficients following intra-muscular dosing. CONCLUSIONS: This study indicates that intramuscular administration is the non-intravenous route of administration with the most potential for achieving targeted TXA exposures. Plasma levels following an IM dose of 1000 mg TXA are predicted to exceed 15 mg/mL in < 15 minutes and be maintained above this level for approximately 3 hours, achieving systemic exposure (AUC0-6) of 99 to 105 µg*hr/mL after a single dose. Well-designed clinical trials to verify these predictions and confirm the utility of intramuscular TXA are recommended

    Higgs boson enhancement effects on squark-pair production at the LHC

    Full text link
    We study the Higgs boson effects on third-generation squark-pair production in proton-proton collision at the CERN Large Hadron Collider (LHC), including \Stop \Stop^*, \Stop\Sbot^*, and \Sbot \Sbot^*. We found that substantial enhancement can be obtained through s-channel exchanges of Higgs bosons at large tanβ\tan\beta, at which the enhancement mainly comes from bbˉb\bar b, bcˉb\bar c, and cbˉc\bar b initial states. We compute the complete set of electroweak (EW) contributions to all production channels. This completes previous computations in the literature. We found that the EW contributions can be significant and can reach up to 25% in more general scenarios and at the resonance of the heavy Higgs boson. The size of Higgs enhancement is comparable or even higher than the PDF uncertainties and so must be included in any reliable analysis. A full analytical computation of all the EW contributions is presented.Comment: 23 pages, 7 figures, 1 tabl

    Casting Light on Dark Matter

    Full text link
    The prospects for detecting a candidate supersymmetric dark matter particle at the LHC are reviewed, and compared with the prospects for direct and indirect searches for astrophysical dark matter. The discussion is based on a frequentist analysis of the preferred regions of the Minimal supersymmetric extension of the Standard Model with universal soft supersymmetry breaking (the CMSSM). LHC searches may have good chances to observe supersymmetry in the near future - and so may direct searches for astrophysical dark matter particles, whereas indirect searches may require greater sensitivity, at least within the CMSSM.Comment: 16 pages, 13 figures, contribution to the proceedings of the LEAP 2011 Conferenc

    Physics Opportunities of e+e- Linear Colliders

    Get PDF
    We describe the anticipated experimental program of an e+e- linear collider in the energy range 500 GeV -- 1.5 TeV. We begin with a description of current collider designs and the expected experimental environment. We then discuss precision studies of the W boson and top quark. Finally, we review the range of models proposed to explain the physics of electroweak symmetry breaking and show, for each case, the central role that the linear collider experiments will play in elucidating this physics. (to appear in Annual Reviews of Nuclear and Particle Science)Comment: 93 pages, latex + 23 figures; typos corrections + 1 reference adde

    On the effect of resonances in composite Higgs phenomenology

    Full text link
    We consider a generic composite Higgs model based on the coset SO(5)/SO(4) and study its phenomenology beyond the leading low-energy effective lagrangian approximation. Our basic goal is to introduce in a controllable and simple way the lowest-lying, possibly narrow, resonances that may exist is such models. We do so by proposing a criterion that we call partial UV completion. We characterize the simplest cases, corresponding respectively to a scalar in either singlet or tensor representation of SO(4) and to vectors in the adjoint of SO(4). We study the impact of these resonances on the signals associated to high-energy vector boson scattering, pointing out for each resonance the characteristic patterns of depletion and enhancement with respect to the leading-order chiral lagrangian. En route we derive the O(p^4) general chiral lagrangian and discuss its peculiar accidental and approximate symmetries.Comment: v3: a few typos corrected. Conclusions unchange

    Suitable thicknesses of base metal and interlayer, and evolution of phases for Ag/Sn/Ag transient liquid-phase joints used for power die attachment

    Get PDF
    Both real Si insulated gate bipolar transistors (IGBT) with conventional Ni\Ag metallization and a dummy Si die with thickened Ni\Ag metallization have been bonded on Ag foils electroplated with 2.7 m and 6.8 m thick Sn as an interlayer at 250ºC for 0 min, 40 min and 640 min. From microstructure characterization of the resulting joints, suitable thicknesses are suggested for the Ag base metal and the Sn interlayer for Ag/Sn/Ag transient liquid phase (TLP) joints used in power die attachment, and the diffusivities of Ag and Sn in the Ag phase are extracted. In combination with the kinetic constants of Ag3Sn growth and diffusivities of Ag and Sn in Ag reported in the literature, the extracted diffusivities of Ag and Sn in Ag phase are also used to simulate and predict the diffusion-controlled growth and evolution of phases in the Ag/Sn/Ag TLP joints during an extended bonding process and in service

    Supersymmetry in the shadow of photini

    Full text link
    Additional neutral gauge fermions -- "photini" -- arise in string compactifications as superpartners of U(1) gauge fields. Unlike their vector counterparts, the photini can acquire weak-scale masses from soft SUSY breaking and lead to observable signatures at the LHC through mass mixing with the bino. In this work we investigate the collider consequences of adding photini to the neutralino sector of the MSSM. Relatively large mixing of one or more photini with the bino can lead to prompt decays of the lightest ordinary supersymmetric particle; these extra cascades transfer most of the energy of SUSY decay chains into Standard Model particles, diminishing the power of missing energy as an experimental handle for signal discrimination. We demonstrate that the missing energy in SUSY events with photini is reduced dramatically for supersymmetric spectra with MSSM neutralinos near the weak scale, and study the effects on limits set by the leading hadronic SUSY searches at ATLAS and CMS. We find that in the presence of even one light photino the limits on squark masses from hadronic searches can be reduced by 400 GeV, with comparable (though more modest) reduction of gluino mass limits. We also consider potential discovery channels such as dilepton and multilepton searches, which remain sensitive to SUSY spectra with photini and can provide an unexpected route to the discovery of supersymmetry. Although presented in the context of photini, our results apply in general to theories in which additional light neutral fermions mix with MSSM gauginos.Comment: 23 pages, 8 figures, references adde

    Cosmic Ray Anomalies from the MSSM?

    Get PDF
    The recent positron excess in cosmic rays (CR) observed by the PAMELA satellite may be a signal for dark matter (DM) annihilation. When these measurements are combined with those from FERMI on the total (e++ee^++e^-) flux and from PAMELA itself on the pˉ/p\bar p/p ratio, these and other results are difficult to reconcile with traditional models of DM, including the conventional mSUGRA version of Supersymmetry even if boosts as large as 103410^{3-4} are allowed. In this paper, we combine the results of a previously obtained scan over a more general 19-parameter subspace of the MSSM with a corresponding scan over astrophysical parameters that describe the propagation of CR. We then ascertain whether or not a good fit to this CR data can be obtained with relatively small boost factors while simultaneously satisfying the additional constraints arising from gamma ray data. We find that a specific subclass of MSSM models where the LSP is mostly pure bino and annihilates almost exclusively into τ\tau pairs comes very close to satisfying these requirements. The lightest τ~\tilde \tau in this set of models is found to be relatively close in mass to the LSP and is in some cases the nLSP. These models lead to a significant improvement in the overall fit to the data by an amount Δχ21/\Delta \chi^2 \sim 1/dof in comparison to the best fit without Supersymmetry while employing boosts 100\sim 100. The implications of these models for future experiments are discussed.Comment: 57 pages, 31 figures, references adde

    General Analysis of Antideuteron Searches for Dark Matter

    Full text link
    Low energy cosmic ray antideuterons provide a unique low background channel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.Comment: 44 pages, 15 Figure
    corecore