37 research outputs found

    Physical activity attenuates the influence of FTO variants on obesity risk: A meta-analysis of 218,166 adults and 19,268 children

    Get PDF
    Background: The FTO gene harbors the strongest known susceptibility locus for obesity. While many individual studies have suggested that physical activity (PA) may attenuate the effect of FTO on obesity risk, other studies have not been able to confirm this interaction. To confirm or refute unambiguously whether PA attenuates the association of FTO with obesity risk, we meta-analyzed data from 45 studies of adults (n = 218,166) and nine studies of children and adolescents (n = 19,268). Methods and Findings: All studies identified to have data on the FTO rs9939609 variant (or any proxy [r2>0.8]) and PA were invited to participate, regardless of ethnicity or age of the participants. PA was standardized by categorizing it into a dichotomous variable (physically inactive versus active) in each study. Overall, 25% of adults and 13% of children were categorized as inactive. Interaction analyses were performed within each study by including the FTOĂ—PA interaction term in an additive model, adjusting for age and sex. Subsequently, random effects meta-analysis was used to pool the interaction terms. In adults, the minor (A-) allele of rs9939609 increased the odds of obesity by 1.23-fold/allele (95% CI 1.20-1.26), but PA attenuated this effect (pinteraction= 0.001). More specifically, the minor allele of rs9939609 increased the odds of obesity less in the physically active group (odds ratio = 1.22/allele, 95% CI 1.19-1.25) than in the inactive group (odds ratio = 1.30/allele, 95% CI 1.24-1.36). No such interaction was found in children and adolescents. Concl

    Expression and Function of the Ghrelin Axis, Including a Novel Preproghrelin Isoform, in Human Breast Cancer Tissues and Cell Lines

    No full text
    While oestrogen, progesterone and growth factors, including growth hormone (GH), are clearly implicated in the pathogenesis of breast cancer, there is now evidence that the newly described ghrelin axis is also involved. The aims of this study were to investigate the expression of the ghrelin axis in breast cancer tissues and cell lines and to examine the effect of ghrelin on breast cancer cell proliferation in vitro. Ghrelin and its functional receptor, the growth hormone secretagogue receptor (GHSR) type 1a, were expressed in normal breast tissue and breast cancer specimens and cell lines. In contrast, the truncated GHSR type 1b isoform was exclusively expressed in breast carcinoma, suggesting that it has potential as a diagnostic marker. Ghrelin treatment significantly increases the proliferation of the MDA-MB-435 and MDA-MB-231 breast cancer cell lines in vitro. In addition, we have described the expression of a human preproghrelin isoform, exon 3-deleted preproghrelin, which encodes mature ghrelin plus a novel C-terminal peptide. Quantitative RT-PCR was used to demonstrate that this mRNA isoform is highly expressed in the MDA-MB-435 metastatic breast cancer cell line relative to the benign MCF-10A breast epithelial cell line. The unique C-terminal peptide of exon 3-deleted preproghrelin is expressed in the glandular epithelium of breast cancer tissues, with high-grade carcinoma exhibiting the strongest immunoreactivity. The data presented here suggest that components of the ghrelin axis may represent novel markers for breast cancer and potential therapeutic targets

    Effect of deletion of ghrelin-o-acyltransferase on the pulsatile release of growth hormone in mice.

    No full text
    Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of the Growth Hormone Secretagogue Receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release, however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad libitum fed male germline goat(-/-) mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat(-/-) mice when compared to age-matched wild-type (WT) mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. While loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of IGF-1 were elevated in goat(-/-) mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat(-/-) mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. While the biological relevance of altered GH secretory patterning remains unclear, we propose that this may contribute to sustained IGF-1 release and growth in goat(-/-) mice. This article is protected by copyright. All rights reserved

    Anatomia del polmone

    No full text

    Abstract 2452: Dysregulated expression of the human long noncoding RNAGHSROSmay influence prostate cancer progression and resistance to docetaxe

    No full text
    Long noncoding RNAs (lncRNAs) play key regulatory roles in cancer progression and are novel therapeutic targets. We recently discovered the lncRNA gene, GHSROS (GHSR opposite strand), on the antisense DNA strand of the ghrelin receptor gene (GHSR). Here, we studied the expression and function of GHSROS in prostate cancer. Interrogation of microarray and RNA-seq data sets revealed that (similar to other lncRNA oncogenes) GHSROS is actively transcribed, although expressed at very low levels in cancer cell lines and tissues. By quantitative RT-PCR we demonstrate that GHSROS is highly expressed in a subset of high-grade prostate cancers (~11.4%). Moreover, the lncRNA is upregulated in high Gleason-score prostate tumors in two clinical data sets. Forced GHSROS overexpression significantly increased in vitro cell proliferation and migration of PC3, DU145, and LNCaP prostate cancer cell lines (P ≤ 0.05, Student's t-test). Increased cell proliferation observed in GHSROS-overexpressing prostate cancer cell lines was recapitulated in PC3, DU145, and LNCaP prostate cancer xenografts in NOD/SCID mice. Cell survival was significantly increased in GHSROS-overexpressing LNCaP cells treated with the cytotoxic drug docetaxel (P ≤ 0.05, Student's t-test). Docetaxel treatment also increased GHSROS expression in native LNCaP and PC3 cells in a dose-dependent manner (P ≤ 0.05, Student's t-test). These data suggest that GHSROS mediates tumor survival and resistance to docetaxel. To identify fundamental drivers of the observed tumorigenic phenotype of GHSROS-overexpressing cell lines, high-throughput RNA-seq data from in vitro cultured PC3 cells and LNCaP xenografts were examined. A quarter of the genes differentially expressed by GHSROS-overexpressing PC3 cells were also differentially expressed by GHSROS-overexpressing LNCaP xenografts. These 101 genes include several transcription factors with established roles in prostate cancer (including the androgen receptor) and genes associated with metastasis and poor prognosis. Finally, we developed two distinct antisense oligonucleotides (ASOs) targeting GHSROS, achieving >60% knockdown, and their function was assessed in vitro. ASO inhibition of GHSROS expression reciprocally regulated cell growth and migration and the expression of a range of genes. These ASOs are currently being assessed in preclinical animal models. Our findings suggest that the long noncoding RNA GHSROS reprograms prostate cancer cells toward a more aggressive phenotype and that the lncRNA represents a promising therapeutic target

    Understanding root, tuber, and banana seed systems and coordination breakdown : a multi-stakeholder framework

    Get PDF
    Vegetatively propagated crop (VPC) seed tends to remain true to varietal type but is bulky, often carries disease, and is slow to produce. So VPC seed needs to be handled differently than that of other crops, e.g., it tends to be sourced locally, often must be fresh, and it is less often sold on the market. Hence, a framework was adapted to describe and support interventions in such seed systems. The framework was used with 13 case studies to understand VPC seed systems for roots, tubers, and bananas, including differing roles and sometimes conflicting goals of stakeholders, and to identify potential coordination breakdowns when actors fail to develop a shared understanding and vision. In this article, we review those case studies. The framework is a critical tool to (a) document VPC seed systems and build evidence; (b) diagnose and treat coordination breakdown and (c) guide decision-makers and donors on the design of more sustainable seed system interventions for VPCs. The framework can be used to analyze past interventions and will be useful for planning future VPC seed programs.</p
    corecore