67 research outputs found

    Dispelling urban myths about default uncertainty factors in chemical risk assessment - Sufficient protection against mixture effects?

    Get PDF
    © 2013 Martin et al.; licensee BioMed Central LtdThis article has been made available through the Brunel Open Access Publishing Fund.Assessing the detrimental health effects of chemicals requires the extrapolation of experimental data in animals to human populations. This is achieved by applying a default uncertainty factor of 100 to doses not found to be associated with observable effects in laboratory animals. It is commonly assumed that the toxicokinetic and toxicodynamic sub-components of this default uncertainty factor represent worst-case scenarios and that the multiplication of those components yields conservative estimates of safe levels for humans. It is sometimes claimed that this conservatism also offers adequate protection from mixture effects. By analysing the evolution of uncertainty factors from a historical perspective, we expose that the default factor and its sub-components are intended to represent adequate rather than worst-case scenarios. The intention of using assessment factors for mixture effects was abandoned thirty years ago. It is also often ignored that the conservatism (or otherwise) of uncertainty factors can only be considered in relation to a defined level of protection. A protection equivalent to an effect magnitude of 0.001-0.0001% over background incidence is generally considered acceptable. However, it is impossible to say whether this level of protection is in fact realised with the tolerable doses that are derived by employing uncertainty factors. Accordingly, it is difficult to assess whether uncertainty factors overestimate or underestimate the sensitivity differences in human populations. It is also often not appreciated that the outcome of probabilistic approaches to the multiplication of sub-factors is dependent on the choice of probability distributions. Therefore, the idea that default uncertainty factors are overly conservative worst-case scenarios which can account both for the lack of statistical power in animal experiments and protect against potential mixture effects is ill-founded. We contend that precautionary regulation should provide an incentive to generate better data and recommend adopting a pragmatic, but scientifically better founded approach to mixture risk assessment. © 2013 Martin et al.; licensee BioMed Central Ltd.Oak Foundatio

    Adverse Effects of Methylmercury: Environmental Health Research Implications

    Get PDF
    Background: The scientific discoveries of health risks resulting from methylmercury exposure began in 1865 describing ataxia, dysarthria, constriction of visual fields, impaired hearing, and sensory disturbance as symptoms of fatal methylmercury poisoning. Objective: Our aim was to examine how knowledge and consensus on methylmercury toxicity have developed in order to identify problems of wider concern in research. Data sources and extraction: We tracked key publications that reflected new insights into human methylmercury toxicity. From this evidence, we identified possible caveats of potential significance for environmental health research in general. Synthesis: At first, methylmercury research was impaired by inappropriate attention to narrow case definitions and uncertain chemical speciation. It also ignored the link between ecotoxicity and human toxicity. As a result, serious delays affected the recognition of methylmercury as a cause of serious human poisonings in Minamata, Japan. Developmental neurotoxicity was first reported in 1952, but despite accumulating evidence, the vulnerability of the developing nervous system was not taken into account in risk assessment internationally until approximately 50 years later. Imprecision in exposure assessment and other forms of uncertainty tended to cause an underestimation of methylmercury toxicity and repeatedly led to calls for more research rather than prevention. Conclusions: Coupled with legal and political rigidity that demanded convincing documentation before considering prevention and compensation, types of uncertainty that are common in environmental research delayed the scientific consensus and were used as an excuse for deferring corrective action. Symptoms of methylmercury toxicity, such as tunnel vision, forgetfulness, and lack of coordination, also seemed to affect environmental health research and its interpretation

    Adverse Effects of Methylmercury: Environmental Health Research Implications

    Get PDF
    Background: The scientific discoveries of health risks resulting from methylmercury exposure began in 1865 describing ataxia, dysarthria, constriction of visual fields, impaired hearing, and sensory disturbance as symptoms of fatal methylmercury poisoning. Objective: Our aim was to examine how knowledge and consensus on methylmercury toxicity have developed in order to identify problems of wider concern in research. Data sources and extraction: We tracked key publications that reflected new insights into human methylmercury toxicity. From this evidence, we identified possible caveats of potential significance for environmental health research in general. Synthesis: At first, methylmercury research was impaired by inappropriate attention to narrow case definitions and uncertain chemical speciation. It also ignored the link between ecotoxicity and human toxicity. As a result, serious delays affected the recognition of methylmercury as a cause of serious human poisonings in Minamata, Japan. Developmental neurotoxicity was first reported in 1952, but despite accumulating evidence, the vulnerability of the developing nervous system was not taken into account in risk assessment internationally until approximately 50 years later. Imprecision in exposure assessment and other forms of uncertainty tended to cause an underestimation of methylmercury toxicity and repeatedly led to calls for more research rather than prevention. Conclusions: Coupled with legal and political rigidity that demanded convincing documentation before considering prevention and compensation, types of uncertainty that are common in environmental research delayed the scientific consensus and were used as an excuse for deferring corrective action. Symptoms of methylmercury toxicity, such as tunnel vision, forgetfulness, and lack of coordination, also seemed to affect environmental health research and its interpretation

    Immune cell counts and risks of respiratory infections among infants exposed pre- and postnatally to organochlorine compounds: a prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early-life chemical exposure may influence immune system development, subsequently affecting child health. We investigated immunomodulatory potentials of polychlorinated biphenyls (PCBs) and <it>p,p'</it>-DDE in infants.</p> <p>Methods</p> <p>Prenatal exposure to PCBs and <it>p,p'</it>-DDE was estimated from maternal serum concentrations during pregnancy. Postnatal exposure was calculated from concentrations of the compounds in mother's milk, total number of nursing days, and percentage of full nursing each week during the 3 month nursing period. Number and types of infections among infants were registered by the mothers (N = 190). White blood cell counts (N = 86) and lymphocyte subsets (N = 52) were analyzed in a subgroup of infants at 3 months of age.</p> <p>Results</p> <p>Infants with the highest prenatal exposure to PCB congeners CB-28, CB-52 and CB-101 had an increased risk of respiratory infection during the study period. In contrast, the infection odds ratios (ORs) were highest among infants with the lowest prenatal mono-<it>ortho </it>PCB (CB-105, CB-118, CB-156, CB-167) and di-<it>ortho </it>PCB (CB-138, CB-153, CB-180) exposure, and postnatal mono- and di-<it>ortho </it>PCB, and <it>p,p'</it>-DDE exposure. Similar results were found for pre- and postnatal CB-153 exposure, a good marker for total PCB exposure. Altogether, a negative relationship was indicated between infections and total organochlorine compound exposure during the whole pre- and postnatal period. Prenatal exposure to CB-28, CB-52 and CB-101 was positively associated with numbers of lymphocytes and monocytes in infants 3 months after delivery. Prenatal exposure to <it>p,p'</it>-DDE was negatively associated with the percentage of eosinophils. No significant associations were found between PCB and <it>p,p'</it>-DDE exposure and numbers/percentages of lymphocyte subsets, after adjustment for potential confounders.</p> <p>Conclusion</p> <p>This hypothesis generating study suggests that background exposure to PCBs and <it>p,p'</it>-DDE early in life modulate immune system development. Strong correlations between mono- and di-<it>ortho </it>PCBs, and <it>p,p'</it>-DDE exposures make it difficult to identify the most important contributor to the suggested immunomodulation, and to separate effects due to pre- and postnatal exposure. The suggested PCB and <it>p,p'</it>-DDE modulation of infection risks may have consequences for the health development during childhood, since respiratory infections early in life may be risk factors for asthma and middle ear infections.</p

    Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Get PDF
    Background: The ‘exposome’ represents the accumulation of all environmental exposures across a lifetime. Topdown strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual’s metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods: High-resolution 1H NMR spectroscopy (metabonomics) was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results: Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4- deoxy-erythronic acid) or one-carbon metabolism (dimethylglycine, creatinine, creatine), were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels) was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions: This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental concentrations, paving the way for exposome research. Keywords: metabonomics, cadmium, environmental health, exposome, metabolomics, molecular epidemiolog

    Lysozym

    No full text
    corecore