102 research outputs found

    Accreting Black Holes

    Full text link
    This chapter provides a general overview of the theory and observations of black holes in the Universe and on their interpretation. We briefly review the black hole classes, accretion disk models, spectral state classification, the AGN classification, and the leading techniques for measuring black hole spins. We also introduce quasi-periodic oscillations, the shadow of black holes, and the observations and the theoretical models of jets.Comment: 41 pages, 18 figures. To appear in "Tutorial Guide to X-ray and Gamma-ray Astronomy: Data Reduction and Analysis" (Ed. C. Bambi, Springer Singapore, 2020). v3: fixed some typos and updated some parts. arXiv admin note: substantial text overlap with arXiv:1711.1025

    Global Analysis of Arabidopsis/Downy Mildew Interactions Reveals Prevalence of Incomplete Resistance and Rapid Evolution of Pathogen Recognition

    Get PDF
    Interactions between Arabidopsis thaliana and its native obligate oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) represent a model system to study evolution of natural variation in a host/pathogen interaction. Both Arabidopsis and Hpa genomes are sequenced and collections of different sub-species are available. We analyzed ∼400 interactions between different Arabidopsis accessions and five strains of Hpa. We examined the pathogen's overall ability to reproduce on a given host, and performed detailed cytological staining to assay for pathogen growth and hypersensitive cell death response in the host. We demonstrate that intermediate levels of resistance are prevalent among Arabidopsis populations and correlate strongly with host developmental stage. In addition to looking at plant responses to challenge by whole pathogen inoculations, we investigated the Arabidopsis resistance attributed to recognition of the individual Hpa effectors, ATR1 and ATR13. Our results suggest that recognition of these effectors is evolutionarily dynamic and does not form a single clade in overall Arabidopsis phylogeny for either effector. Furthermore, we show that the ultimate outcome of the interactions can be modified by the pathogen, despite a defined gene-for-gene resistance in the host. These data indicate that the outcome of disease and disease resistance depends on genome-for-genome interactions between the host and its pathogen, rather than single gene pairs as thought previously

    IGL-1 solution reduces endoplasmic reticulum stress and apoptosis in rat liver transplantation

    Get PDF
    Injury due to cold ischemia reperfusion (I/R) is a major cause of primary graft non-function following liver transplantation. We postulated that I/R-induced cellular damage during liver transplantation might affect the secretory pathway, particularly at the endoplasmic reticulum (ER). We examined the involvement of ER stress in organ preservation, and compared cold storage in University of Wisconsin (UW) solution and in Institute Georges Lopez-1 (IGL-1) solution. In one group of rats, livers were preserved in UW solution for 8 h at 4 °C, and then orthotopic liver transplantation was performed according to Kamada's cuff technique. In another group, livers were preserved in IGL-1 solution. The effect of each preservation solution on the induction of ER stress, hepatic injury, mitochondrial damage and cell death was evaluated. As expected, we found increased ER stress after liver transplantation. IGL-1 solution significantly attenuated ER damage by reducing the activation of three pathways of unfolded protein response and their effector molecules caspase-12, C/EBP homologous protein-10, X-box-binding protein 1, tumor necrosis factor-associated factor 2 and eukaryotic translation initiation factor 2. This attenuation of ER stress was associated with a reduction in hepatic injury and cell death. Our results show that IGL-1 solution may be a useful means to circumvent excessive ER stress reactions associated with liver transplantation, and may optimize graft quality

    DNA repair: the culprit for tumor-initiating cell survival?

    Get PDF
    The existence of β€œtumor-initiating cells” (TICs) has been a topic of heated debate for the last few years within the field of cancer biology. Their continuous characterization in a variety of solid tumors has led to an abundance of evidence supporting their existence. TICs are believed to be responsible for resistance against conventional treatment regimes of chemotherapy and radiation, ultimately leading to metastasis and patient demise. This review summarizes DNA repair mechanism(s) and their role in the maintenance and regulation of stem cells. There is evidence supporting the hypothesis that TICs, similar to embryonic stem (ES) cells and hematopoietic stem cells (HSCs), display an increase in their ability to survive genotoxic stress and injury. Mechanistically, the ability of ES cells, HSCs and TICs to survive under stressful conditions can be attributed to an increase in the efficiency at which these cells undergo DNA repair. Furthermore, the data presented in this review summarize the results found by our lab and others demonstrating that TICs have an increase in their genomic stability, which can allow for TIC survival under conditions such as anticancer treatments, while the bulk population of tumor cells dies. We believe that these data will greatly impact the development and design of future therapies being engineered to target and eradicate this highly aggressive cancer cell population

    Dysregulation of MicroRNA-34a Expression in Head and Neck Squamous Cell Carcinoma Promotes Tumor Growth and Tumor Angiogenesis

    Get PDF
    MicroRNAs (miRs) are small non-coding RNAs that play an important role in cancer development where they can act as oncogenes or as tumor-suppressors. miR-34a is a tumor-suppressor that is frequently downregulated in a number of tumor types. However, little is known about the role of miR-34a in head and neck squamous cell carcinoma (HNSCC).miR-34a expression in tumor samples, HNSCC cell lines and endothelial cells was examined by real time PCR. Lipofectamine-2000 was used to transfect miR-34a in HNSCC cell lines and human endothelial cells. Cell-proliferation, migration and clonogenic survival was examined by MTT, Xcelligence system, scratch assay and colony formation assay. miR-34a effect on tumor growth and tumor angiogenesis was examined by in vivo SCID mouse xenograft model. Our results demonstrate that miR-34a is significantly downregulated in HNSCC tumors and cell lines. Ectopic expression of miR-34a in HNSCC cell lines significantly inhibited tumor cell proliferation, colony formation and migration. miR-34a overexpression also markedly downregulated E2F3 and survivin levels. Rescue experiments using microRNA resistant E2F3 isoforms suggest that miR-34a-mediated inhibition of cell proliferation and colony formation is predominantly mediated by E2F3a isoform. In addition, tumor samples from HNSCC patients showed an inverse relationship between miR-34a and survivin as well as miR-34a and E2F3 levels. Overexpression of E2F3a completely rescued survivin expression in miR-34a expressing cells, thereby suggesting that miR-34a may be regulating survivin expression via E2F3a. Ectopic expression of miR-34a also significantly inhibited tumor growth and tumor angiogenesis in a SCID mouse xenograft model. Interestingly, miR-34a inhibited tumor angiogenesis by blocking VEGF production by tumor cells as well as directly inhibiting endothelial cell functions.Taken together, these findings suggest that dysregulation of miR-34a expression is common in HNSCC and modulation of miR34a activity might represent a novel therapeutic strategy for the treatment of HNSCC

    Polyploidization Altered Gene Functions in Cotton (Gossypium spp.)

    Get PDF
    Cotton (Gossypium spp.) is an important crop plant that is widely grown to produce both natural textile fibers and cottonseed oil. Cotton fibers, the economically more important product of the cotton plant, are seed trichomes derived from individual cells of the epidermal layer of the seed coat. It has been known for a long time that large numbers of genes determine the development of cotton fiber, and more recently it has been determined that these genes are distributed across At and Dt subgenomes of tetraploid AD cottons. In the present study, the organization and evolution of the fiber development genes were investigated through the construction of an integrated genetic and physical map of fiber development genes whose functions have been verified and confirmed. A total of 535 cotton fiber development genes, including 103 fiber transcription factors, 259 fiber development genes, and 173 SSR-contained fiber ESTs, were analyzed at the subgenome level. A total of 499 fiber related contigs were selected and assembled. Together these contigs covered about 151 Mb in physical length, or about 6.7% of the tetraploid cotton genome. Among the 499 contigs, 397 were anchored onto individual chromosomes. Results from our studies on the distribution patterns of the fiber development genes and transcription factors between the At and Dt subgenomes showed that more transcription factors were from Dt subgenome than At, whereas more fiber development genes were from At subgenome than Dt. Combining our mapping results with previous reports that more fiber QTLs were mapped in Dt subgenome than At subgenome, the results suggested a new functional hypothesis for tetraploid cotton. After the merging of the two diploid Gossypium genomes, the At subgenome has provided most of the genes for fiber development, because it continues to function similar to its fiber producing diploid A genome ancestor. On the other hand, the Dt subgenome, with its non-fiber producing D genome ancestor, provides more transcription factors that regulate the expression of the fiber genes in the At subgenome. This hypothesis would explain previously published mapping results. At the same time, this integrated map of fiber development genes would provide a framework to clone individual full-length fiber genes, to elucidate the physiological mechanisms of the fiber differentiation, elongation, and maturation, and to systematically study the functional network of these genes that interact during the process of fiber development in the tetraploid cottons

    Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection

    Get PDF
    Background: Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. Results: We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima’s D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. Conclusions: Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts
    • …
    corecore