167 research outputs found

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Selection of a core set of RILs from Forrest × Williams 82 to develop a framework map in soybean

    Get PDF
    Soybean BAC-based physical maps provide a useful platform for gene and QTL map-based cloning, EST mapping, marker development, genome sequencing, and comparative genomic research. Soybean physical maps for “Forrest” and “Williams 82” representing the southern and northern US soybean germplasm base, respectively, have been constructed with different fingerprinting methods. These physical maps are complementary for coverage of gaps on the 20 soybean linkage groups. More than 5,000 genetic markers have been anchored onto the Williams 82 physical map, but only a limited number of markers have been anchored to the Forrest physical map. A mapping population of Forrest × Williams 82 made up of 1,025 F8 recombinant inbred lines (RILs) was used to construct a reference genetic map. A framework map with almost 1,000 genetic markers was constructed using a core set of these RILs. The core set of the population was evaluated with the theoretical population using equality, symmetry and representativeness tests. A high-resolution genetic map will allow integration and utilization of the physical maps to target QTL regions of interest, and to place a larger number of markers into a map in a more efficient way using a core set of RILs

    Scanning and filling : ultra-dense SNP genotyping combining genotyping-by-sequencing, SNP array and whole-genome resequencing data

    Get PDF
    Genotyping-by-sequencing (GBS) represents a highly cost-effective high-throughput genotyping approach. By nature, however, GBS is subject to generating sizeable amounts of missing data and these will need to be imputed for many downstream analyses. The extent to which such missing data can be tolerated in calling SNPs has not been explored widely. In this work, we first explore the use of imputation to fill in missing genotypes in GBS datasets. Importantly, we use whole genome resequencing data to assess the accuracy of the imputed data. Using a panel of 301 soybean accessions, we show that over 62,000 SNPs could be called when tolerating up to 80% missing data, a five-fold increase over the number called when tolerating up to 20% missing data. At all levels of missing data examined (between 20% and 80%), the resulting SNP datasets were of uniformly high accuracy (96– 98%). We then used imputation to combine complementary SNP datasets derived from GBS and a SNP array (SoySNP50K). We thus produced an enhanced dataset of >100,000 SNPs and the genotypes at the previously untyped loci were again imputed with a high level of accuracy (95%). Of the >4,000,000 SNPs identified through resequencing 23 accessions (among the 301 used in the GBS analysis), 1.4 million tag SNPs were used as a reference to impute this large set of SNPs on the entire panel of 301 accessions. These previously untyped loci could be imputed with around 90% accuracy. Finally, we used the 100K SNP dataset (GBS + SoySNP50K) to perform a GWAS on seed oil content within this collection of soybean accessions. Both the number of significant marker-trait associations and the peak significance levels were improved considerably using this enhanced catalog of SNPs relative to a smaller catalog resulting from GBS alone at 20% missing data. Our results demonstrate that imputation can be used to fill in both missing genotypes and untyped loci with very high accuracy and that this leads to more powerful genetic analyses

    Alien Plants Introduced by Different Pathways Differ in Invasion Success: Unintentional Introductions as a Threat to Natural Areas

    Get PDF
    BACKGROUND: Understanding the dimensions of pathways of introduction of alien plants is important for regulating species invasions, but how particular pathways differ in terms of post-invasion success of species they deliver has never been rigorously tested. We asked whether invasion status, distribution and habitat range of 1,007 alien plant species introduced after 1500 A.D. to the Czech Republic differ among four basic pathways of introduction recognized for plants. PRINCIPAL FINDINGS: Pathways introducing alien species deliberately as commodities (direct release into the wild; escape from cultivation) result in easier naturalization and invasion than pathways of unintentional introduction (contaminant of a commodity; stowaway arriving without association with it). The proportion of naturalized and invasive species among all introductions delivered by a particular pathway decreases with a decreasing level of direct assistance from humans associated with that pathway, from release and escape to contaminant and stowaway. However, those species that are introduced via unintentional pathways and become invasive are as widely distributed as deliberately introduced species, and those introduced as contaminants invade an even wider range of seminatural habitats. CONCLUSIONS: Pathways associated with deliberate species introductions with commodities and pathways whereby species are unintentionally introduced are contrasting modes of introductions in terms of invasion success. However, various measures of the outcome of the invasion process, in terms of species' invasion success, need to be considered to accurately evaluate the role of and threat imposed by individual pathways. By employing various measures we show that invasions by unintentionally introduced plant species need to be considered by management as seriously as those introduced by horticulture, because they invade a wide range of seminatural habitats, hence representing even a greater threat to natural areas

    A role for a neo-sex chromosome in stickleback speciation.

    Get PDF
    Sexual antagonism, or conflict between the sexes, has been proposed as a driving force in both sex-chromosome turnover and speciation. Although closely related species often have different sex-chromosome systems, it is unknown whether sex-chromosome turnover contributes to the evolution of reproductive isolation between species. Here we show that a newly evolved sex chromosome contains genes that contribute to speciation in threespine stickleback fish (Gasterosteus aculeatus). We first identified a neo-sex chromosome system found only in one member of a sympatric species pair in Japan. We then performed genetic linkage mapping of male-specific traits important for reproductive isolation between the Japanese species pair. The neo-X chromosome contains loci for male courtship display traits that contribute to behavioural isolation, whereas the ancestral X chromosome contains loci for both behavioural isolation and hybrid male sterility. Our work not only provides strong evidence for a large X-effect on reproductive isolation in a vertebrate system, but also provides direct evidence that a young neo-X chromosome contributes to reproductive isolation between closely related species. Our data indicate that sex-chromosome turnover might have a greater role in speciation than was previously appreciated

    A Novel Protein Isoform of the Multicopy Human NAIP Gene Derives from Intragenic Alu SINE Promoters

    Get PDF
    The human neuronal apoptosis inhibitory protein (NAIP) gene is no longer principally considered a member of the Inhibitor of Apoptosis Protein (IAP) family, as its domain structure and functions in innate immunity also warrant inclusion in the Nod-Like Receptor (NLR) superfamily. NAIP is located in a region of copy number variation, with one full length and four partly deleted copies in the reference human genome. We demonstrate that several of the NAIP paralogues are expressed, and that novel transcripts arise from both internal and upstream transcription start sites. Remarkably, two internal start sites initiate within Alu short interspersed element (SINE) retrotransposons, and a third novel transcription start site exists within the final intron of the GUSBP1 gene, upstream of only two NAIP copies. One Alu functions alone as a promoter in transient assays, while the other likely combines with upstream L1 sequences to form a composite promoter. The novel transcripts encode shortened open reading frames and we show that corresponding proteins are translated in a number of cell lines and primary tissues, in some cases above the level of full length NAIP. Interestingly, some NAIP isoforms lack their caspase-sequestering motifs, suggesting that they have novel functions. Moreover, given that human and mouse NAIP have previously been shown to employ endogenous retroviral long terminal repeats as promoters, exaptation of Alu repeats as additional promoters provides a fascinating illustration of regulatory innovations adopted by a single gene

    A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, <it>Arabidopsis thaliana</it>, provides means to explore their genomic complexity.</p> <p>Results</p> <p>A genome-wide physical map of a rapid-cycling strain of <it>B. oleracea </it>was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of <it>B. oleracea </it>and <it>Arabidopsis thaliana</it>, a relatively high level of genomic change since their divergence. Comparison of the <it>B. oleracea </it>physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity.</p> <p>Conclusions</p> <p>A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes.</p> <p>All the physical mapping data is freely shared at a WebFPC site (<url>http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/</url>; Temporarily password-protected: account: pgml; password: 123qwe123.</p

    Physical mapping and BAC-end sequence analysis provide initial insights into the flax (Linum usitatissimum L.) genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flax (<it>Linum usitatissimum </it>L.) is an important source of oil rich in omega-3 fatty acids, which have proven health benefits and utility as an industrial raw material. Flax seeds also contain lignans which are associated with reducing the risk of certain types of cancer. Its bast fibres have broad industrial applications. However, genomic tools needed for molecular breeding were non existent. Hence a project, Total Utilization Flax GENomics (TUFGEN) was initiated. We report here the first genome-wide physical map of flax and the generation and analysis of BAC-end sequences (BES) from 43,776 clones, providing initial insights into the genome.</p> <p>Results</p> <p>The physical map consists of 416 contigs spanning ~368 Mb, assembled from 32,025 fingerprints, representing roughly 54.5% to 99.4% of the estimated haploid genome (370-675 Mb). The N50 size of the contigs was estimated to be ~1,494 kb. The longest contig was ~5,562 kb comprising 437 clones. There were 96 contigs containing more than 100 clones. Approximately 54.6 Mb representing 8-14.8% of the genome was obtained from 80,337 BES. Annotation revealed that a large part of the genome consists of ribosomal DNA (~13.8%), followed by known transposable elements at 6.1%. Furthermore, ~7.4% of sequence was identified to harbour novel repeat elements. Homology searches against flax-ESTs and NCBI-ESTs suggested that ~5.6% of the transcriptome is unique to flax. A total of 4064 putative genomic SSRs were identified and are being developed as novel markers for their use in molecular breeding.</p> <p>Conclusion</p> <p>The first genome-wide physical map of flax constructed with BAC clones provides a framework for accessing target loci with economic importance for marker development and positional cloning. Analysis of the BES has provided insights into the uniqueness of the flax genome. Compared to other plant genomes, the proportion of rDNA was found to be very high whereas the proportion of known transposable elements was low. The SSRs identified from BES will be valuable in saturating existing linkage maps and for anchoring physical and genetic maps. The physical map and paired-end reads from BAC clones will also serve as scaffolds to build and validate the whole genome shotgun assembly.</p

    The genomic basis of adaptive evolution in threespine sticklebacks

    Get PDF
    Marine stickleback fish have colonized and adapted to thousands of streams and lakes formed since the last ice age, providing an exceptional opportunity to characterize genomic mechanisms underlying repeated ecological adaptation in nature. Here we develop a high-quality reference genome assembly for threespine sticklebacks. By sequencing the genomes of twenty additional individuals from a global set of marine and freshwater populations, we identify a genome-wide set of loci that are consistently associated with marine–freshwater divergence. Our results indicate that reuse of globally shared standing genetic variation, including chromosomal inversions, has an important role in repeated evolution of distinct marine and freshwater sticklebacks, and in the maintenance of divergent ecotypes during early stages of reproductive isolation. Both coding and regulatory changes occur in the set of loci underlying marine–freshwater evolution, but regulatory changes appear to predominate in this well known example of repeated adaptive evolution in nature.National Human Genome Research Institute (U.S.)National Human Genome Research Institute (U.S.) (NHGRI CEGS Grant P50-HG002568
    corecore